摘要:
A video processing device may generate a two dimensional (2D) output video stream from a three dimensional (3D) input video stream that comprises a plurality of view sequences. The plurality of view sequences may comprise sequences of stereoscopic left and right reference fields or frames. A view sequence may initially be selected as a base sequence for the 2D output video stream, and the 2D output video stream may be enhanced using video content and/or information from unselected view sequences. The video content and/or information utilized in enhancing the 2D output video stream may comprise depth information, and/or foreground and/or background information. The enhancement of the 2D input video stream may comprise improving depth, contrast, sharpness, and/or rate upconversion using frame and/or field based interpolation of images in the 2D output video stream.
摘要:
Receiver receives a compressed 3D video comprising a base view video and an enhancement view video. The video receiver determines a random access that occurs at a two-view misaligned base view RAP to start decoding activities on the received compressed 3D video based on a corresponding two-view aligned random access point (RAP). The corresponding two-view aligned RAP is adjacent to the two-view misaligned base view RAP. Pictures in the received compressed 3D video are buffered for the two-view misaligned base view RAP to be decoded staring from the corresponding two-view aligned RAP. One or more pictures in the enhancement view video are interpolated based on the two-view misaligned base view RAP. The video receiver selects a portion of the buffered pictures to be decoded to facilitate a trick mode in personal video recording (PVR) operations for random access at the two-view misaligned RAP.
摘要:
A video receiver receives a layered and predicted compressed 3D video comprising a base view video and an enhancement view video. A portion of pictures in the received compressed 3D video are selected to be decoded for display at an intended pace. Pictures in the received compressed 3D video are generated based on a tier system framework with tiers ordered hierarchically according to corresponding decodability. Each picture in the base view and enhancement view videos belongs to one of the plurality of tiers. A picture in a particular tier does not depend directly or indirectly on pictures in a higher tier. Each tier comprises one or more pictures with the same coding order. The video receiver decodes the pictures with the same coding order in parallel, and adaptively decodes the selected pictures according to corresponding coding layer information. The selected pictures are determined based on a particular display rate.
摘要:
A first 3D graphics and/or 3D video processing device generates left and right view 3D graphics frames comprising 3D content which are communicated to a 3D display device for display. The 3D frames are generated based on a display format utilized by the 3D display device. The first 3D device may comprise a set-top-box and/or computer. The left and/or right 3D graphics frames may be generated based on time sequential display and/or polarizing display. Sub-sampling 3D graphics frames may be based on odd and even row display polarization patterns and/or checkerboard polarization patterns. Left and right 3D graphics pixels may be blended with video pixels. Left and/or right 3D graphics frames may be displayed sequentially in time. Left and/or right 3D graphics frames may be sub-sampled in complimentary pixel patterns, interleaved in a single frame and displayed utilizing varying polarization orientations for left and right pixels.
摘要:
A video transmitter compresses an uncompressed 3D video into a base view video and an enhancement view video using MPEG-4 MVC standard. The video transmitter allocates bits to compressed pictures of the uncompressed 3D video based on corresponding picture type. More bits are allocated to I-pictures than P-pictures, and more bits are allocated to P-pictures than B-pictures in a given coding view. More bits are allocated to a compressed picture of the base view video than a same type compressed picture of the enhancement view video. The correlation level between the base view video and the enhancement view video is utilized for bit-allocation in video compression. More bits are allocated to a picture in a lower coding layer than to the same type picture in a higher coding layer in a given coding view. Pictures with the same cording order are identified from different view videos for a joint bit-allocation.
摘要:
A video receiver receives a compound transport stream (TS) comprising 3D program video streams and spliced advertising streams. The received one or more 3D program video streams are extracted and decoded. Targeted advertising streams are extracted from the received advertising streams according to user criteria. Targeted advertising graphic objects of the extracted or replaced targeted advertising streams are spliced into the decoded 3D program video streams. The decoded 3D program video with the spliced targeted advertising graphic objects is presented in a 2D video. The extracted or replaced targeted advertising streams are processed to generate the targeted advertising graphic objects to be spliced based on focal point of view. The generated targeted advertising graphic objects are located according to associated scene graph information. The decoded 3D program video streams and the spliced targeted advertising graphic objects are converted into a 2D video for display.
摘要:
A video transmitter identifies regions in pictures in a compressed three-dimensional (3D) video comprising a base view video and an enhancement view video. The identified regions are not referenced by other pictures in the compressed 3D video. The identified regions are watermarked. Pictures such as a high layer picture in the base view video and the enhancement view video are identified for watermarking. The identified regions in the base view and/or enhancement view videos are watermarked and multiplexed into a transport stream for transmission. An intended video receiver extracts the base view video, the enhancement view video and corresponding watermark data from the received transport stream. The corresponding extracted watermark data are synchronized with the extracted base view video and the extracted enhancement view video, respectively, for watermark insertion. The resulting base view and enhancement view videos are decoded into a left view video and a right view video, respectively.
摘要:
A 2D and/or 3D video processing device comprising a camera and a display captures images of a viewer as the viewer observes displayed 2D and/or 3D video content in a viewport. Face and/or eye tracking of viewer images is utilized to generate a different viewport. Current and different viewports may comprise 2D and/or 3D video content from a single source or from different sources. The sources of 2D and/or 3D content may be scrolled, zoomed and/or navigated through for generating the different viewport. Content for the different viewport may be processed. Images of a viewer's positions, angles and/or movements of face, facial expression, eyes and/or physical gestures are captured by the camera and interpreted by face and/or eye tracking. The different viewport may be generated for navigating through 3D content and/or for rotating a 3D object. The 2D and/or 3D video processing device communicates via wire, wireless and/or optical interfaces.
摘要:
A video processor decompresses stereoscopic left and right reference frames of compressed 3D video. New left and right frames are interpolated. The frames may be stored and/or communicated for display. The left and right frames are combined into a single frame of a single stream or may be sequenced in separate left and right streams. The left and right frames are interpolated based on the combined single stream and/or based on the separate left and right streams. Motion vectors are determined for one of the separate left or right streams. The frames are interpolated utilizing motion compensation. Areas of occlusion are determined in the separate left and right streams. Pixels are interpolated for occluded areas of left or right frames of separate streams from uncovered areas in corresponding opposite side frames. The left and right interpolated and/or reference frames are displayed as 3D and/or 2D video.
摘要:
A video receiver receives a compound transport stream (TS) comprising 3D program video streams and spliced advertising streams. The received one or more 3D program video streams are extracted and decoded. Targeted advertising streams are extracted from the received advertising streams according to user criteria. Targeted advertising graphic objects of the extracted or replaced targeted advertising streams are spliced into the decoded 3D program video streams. The decoded 3D program video with the spliced targeted advertising graphic objects is presented in a 2D video. The extracted or replaced targeted advertising streams are processed to generate the targeted advertising graphic objects to be spliced based on focal point of view. The generated targeted advertising graphic objects are located according to associated scene graph information. The decoded 3D program video streams and the spliced targeted advertising graphic objects are converted into a 2D video for display.