Abstract:
A liquid crystal display includes a first insulating substrate. A pixel electrode is formed on a top surface of the first insulating substrate. The pixel electrode has a first opening pattern at each pixel area. The pixel electrode is substantially rectangular in shape with first and second long sides, and first and second short sides. The pixel electrode is divided into an upper region defined by the first and second long sides and first short side, and a lower region defined by the first and second long sides and second short side. A common electrode is formed on a bottom surface of a second insulating substrate, and has a second opening pattern at each pixel area. The first and second opening patterns each have a plurality of openings, the openings of the first opening pattern and the second opening pattern being alternately arranged parallel to each other.
Abstract:
A flat panel display having an improved picture quality is disclosed. In one embodiment, a first pixel electrode and a second pixel electrode are formed in each subpixel area. The electrodes enclose an open space (gap) such that their outer boundary has a substantially rectangular shape. The flat panel display may also include a capacitance electrode coupled to the second pixel electrode to form a coupling capacitor. In use, the coupling capacitor operates such that a magnitude of a voltage applied to the first pixel electrode is lower than an applied data voltage, and a magnitude of a voltage applied to the second pixel electrode is higher than an applied voltage. The different voltages operate such that a tilt direction of LC molecules disposed above the first pixel electrode differs from a tilt direction of LC molecules disposed above the second pixel electrode.
Abstract:
A liquid crystal display device includes a first substrate, a second substrate facing the first substrate, a dual passivation layer disposed between the first substrate and the second substrate. The dual passivation layer includes a first passivation layer and a second passivation layer. A refractive index of the first passivation layer is different from a refractive index of the second passivation layer.
Abstract:
A liquid crystal display includes first and second gate lines and first and second data lines, on a first substrate, a first thin film transistor connected to the first gate and data lines and including a first source and drain electrode, a second thin film transistor connected to the second gate and data lines and including a second source and drain electrode, first and second pixel electrodes contacting a portion of the first and second drain electrodes, respectively, a passivation layer on the first and second pixel electrodes and the first and second thin film transistors, and a reference electrode on a passivation layer and overlapping the first pixel electrode and the second pixel electrode. The reference electrode includes a plurality of branch electrodes. The first thin film transistor is right of the first data line and the second thin film transistor is left of the second data line.
Abstract:
A liquid crystal display includes a first insulating substrate. A pixel electrode is formed on a top surface of the first insulating substrate. The pixel electrode has a first opening pattern at each pixel area. The pixel electrode is substantially rectangular in shape with first and second long sides, and first and second short sides. The pixel electrode is divided into an upper region defined by the first and second long sides and first short side, and a lower region defined by the first and second long sides and second short side. A common electrode is formed on a bottom surface of a second insulating substrate, and has a second opening pattern at each pixel area. The first and second opening patterns each have a plurality of openings, the openings of the first opening pattern and the second opening pattern being alternately arranged parallel to each other.
Abstract:
A liquid crystal display (LCD) is provided, which includes: first and second gate lines, a data line intersecting the gate lines, first to fourth drain electrodes located near the intersections between the first and second gate lines and the data line, and a coupling electrode. First to fourth pixel electrodes respectively connected to the first to fourth drain electrodes are also provided, and the first pixel electrode is connected to the coupling electrode while the fourth pixel electrode overlaps the coupling electrode. The LCD further includes a common electrode opposite the pixel electrodes, a liquid crystal layer interposed between the pixel electrodes and the common electrode, and a domain partitioning member formed on at least one of the pixel electrode and the common electrode. Two long edges of the domains are angled with respect to the first and the second gate lines or the data line substantially by about 45°.
Abstract:
A liquid crystal display (LCD) is provided, which includes: first and second gate lines, a data line intersecting the gate lines, first to fourth drain electrodes located near the intersections between the first and second gate lines and the data line, and a coupling electrode. First to fourth pixel electrodes respectively connected to the first to fourth drain electrodes are also provided, and the first pixel electrode is connected to the coupling electrode while the fourth pixel electrode overlaps the coupling electrode. The LCD further includes a common electrode opposite the pixel electrodes, a liquid crystal layer interposed between the pixel electrodes and the common electrode, and a domain partitioning member formed on at least one of the pixel electrode and the common electrode. Two long edges of the domains are angled with respect to the first and the second gate lines or the data line substantially by about 45°.
Abstract:
A liquid crystal display includes: a liquid crystal capacitor; a first switching element which transmits a data voltage to the liquid crystal capacitor; a second switching element connected to the liquid crystal capacitor; and a transformation capacitor connected to the second switching element. A difference between a first time when the first switching element is turned on and a second time when the second switching element starts is turned on is greater than 1 horizontal period and less than 1 frame period.