Abstract:
A display device includes: a first pixel including a first light emitting diode (LED) and a first capacitor including a first electrode connected to a first power source voltage providing a driving voltage to an anode of the first light emitting diode (LED) or to an initialization voltage, and a second electrode connected to the anode of the first light emitting diode (LED); and a second pixel including a second light emitting diode (LED) and a second capacitor including a first electrode connected to the first power source voltage providing the driving voltage to an anode of the second light emitting diode (LED) or to an initialization voltage, and a second electrode connected to the anode of the second light emitting diode (LED), wherein capacitance of the second capacitor is less than capacitance of the first capacitor.
Abstract:
A display device includes: a substrate including a plurality of pixels formed in row and column directions; a thin film transistor disposed on the substrate, and a pixel electrode connected to the thin film transistor; a first liquid crystal layer filled inside a microcavity formed on the pixel electrode; a plurality of roof layers formed to be separated from the pixel electrode with the microcavity and an injection hole therebetween; and an overcoat formed on the roof layer to cover the injection hole and encapsulate the microcavity. The first liquid crystal layer includes a liquid crystal molecule and a color material. It is possible to simplify a structure of the display device and reduce the number of manufacturing processes thereof by adding a color material to a liquid crystal material of the display device manufactured with a single substrate such that a color filter may be removed.
Abstract:
A liquid crystal display including a plurality of gate lines and a plurality of data lines that is insulated from and cross the plurality of gate lines, and a plurality of unit pixels connected to the plurality of gate lines and the plurality of data lines, wherein the plurality of unit pixel includes a first pixel at row 1 and column 1, a second pixel at row 1 and column 2, a third pixel at row 2 and column 1, and a fourth pixel at row 2 and column 2, a first gate line and a second gate line are disposed in parallel to each other between the first pixel and the third pixel and between the second pixel and the fourth pixel, and the first gate line is connected to the first pixel and the third pixel at different neighboring rows, and the second gate line is connected to the second pixel and the fourth pixel at different neighboring rows.
Abstract:
A liquid crystal display includes first and second sub-pixels charged with the same voltage during a first period. The voltage charged in the second sub-pixel is decreased after the first period. Since the voltage level of the first sub-pixel is different from the voltage level of the second sub-pixel after the first period, liquid crystal molecules disposed corresponding to the first sub-pixel are aligned in a direction different from that of liquid crystal molecules disposed corresponding to the second sub-pixel. Thus, a side viewing angle of the liquid crystal display is improved.
Abstract:
A liquid crystal display includes a pixel that includes a first sub-pixel chargeable with a first voltage and a second sub-pixel chargeable with a second voltage different from the first voltage, a pixel electrode that includes a first sub-pixel electrode in the first sub-pixel and a second sub-pixel electrode in the second sub-pixel, a common electrode that faces the pixel electrode, and a liquid crystal layer between the pixel electrode and the common electrode. The first sub-pixel electrode includes a first trunk portion and a plurality of first branch portions protruding from and extending from one side of the first trunk portion. The second sub-pixel electrode includes a second trunk portion and a plurality of second and third branch portions that protrude from both sides of the second trunk portion and extend substantially parallel to the first branch portions.
Abstract:
A phase shift device includes a phase shift mask which includes a transparent substrate, and a phase shift pattern which is provided on the transparent substrate, and includes a first area having a first thickness, a second area having a second thickness which is less than the first thickness, a first opening having a first opening width and defined at the first area, and a second opening having a second opening width and defined at the second area.
Abstract:
A thin film transistor array panel includes a substrate, a gate line extending in a first direction on the substrate, a data line extending in a second direction on the substrate and intersecting the gate line, a thin film transistor connected to the gate line and the data line, an insulating layer on the gate line, the data line, and the thin film transistor, a first auxiliary line on the insulating layer and connected to the gate line, a second auxiliary line on the insulating layer and connected to the data line, and a pixel electrode connected to the thin film transistor.