Abstract:
A method for manufacturing a quantum dot includes a method of manufacturing a quantum dot including heating a first mixture including a Group II precursor and a Group III precursor, adding an organic solvent to the first mixture and cooling the resultant under an inert gas atmosphere, adding a Group V precursor solution to the cooled resultant including the first mixture and the organic solvent to prepare a second mixture and heating the second mixture, and adding a mixture of a Group V precursor and a Group VI precursor to the second mixture to prepare a third mixture and allowing third mixture to react.
Abstract:
Provided is a liquid crystal display including: a substrate; a thin film transistor disposed on the substrate; a pixel electrode disposed on the thin film transistor and connected to the thin film transistor; a roof layer disposed on the pixel electrode to be spaced apart from the pixel electrode with a microcavity therebetween; a liquid crystal layer positioned in the microcavity; a polarizer; and a quantum rod layer in which a plurality of quantum rods is disposed, in which one of the polarizer and the quantum rod layer is disposed below the substrate and the other one is disposed on the roof layer.
Abstract:
A liquid crystal display includes: a display panel; and a color conversion layer positioned on the display panel, wherein the color conversion layer includes a scattering layer including a color conversion media layer and scatterers.
Abstract:
An emissive type display device includes: a first insulation substrate; a light conversion layer formed proximate to an inner surface of the first insulation substrate; a plasmonic color polarization layer formed on the light conversion layer; a second insulation substrate having an inner surface that faces the inner surface of the first insulation substrate; and a liquid crystal layer interposed between the inner surfaces of the first insulation substrate and the second insulation substrate. The plasmonic color polarization layer is configured to polarize and transmit light having wavelengths within a first wavelength range, and to reflect light having wavelengths within a second wavelength range.
Abstract:
A display device may include a substrate and a plurality of color conversion units on the substrate. Each of the plurality of color conversion units may include a photonic crystal layer having at least two layers having different refractive indices alternately stacked, and a wavelength shifter dispersed in at least one of the at least two layers.
Abstract:
A liquid crystal display (LCD) comprises a light source configured to provide a first light having a first wavelength, a first wavelength conversion layer configured to convert the first light into a second light having a second wavelength longer than the first wavelength, and a first optical shutter which overlaps the first wavelength conversion layer, is configured to adjust transmittance of the first light or the second light, and comprises liquid crystal molecules and dichromatic dye.
Abstract:
An exemplary display device includes: a display panel; a color conversion panel overlapping the display panel; and an optical bonding layer positioned between the display panel and the color conversion panel. The color conversion panel includes: a substrate; a color conversion layer and a transmission layer positioned between the substrate and the display panel; a first capping layer having one side facing the color conversion layer and the transmission layer, and another side facing the display panel; a second capping layer positioned between the first capping layer and the display panel; and an optical layer positioned between the first capping layer and the second capping layer and/or between the second capping layer and the optical bonding layer. A refractive index of the optical layer is lower than at least one of a refractive index of the first capping layer and a refractive index of the second capping layer.
Abstract:
A display device includes a transistor on a base layer, the transistor including an active layer, a gate electrode, a first transistor electrode electrically connected to a first contact region of the active layer, and a second transistor electrode electrically connected to a second contact region of the active layer; an interlayer insulating layer on the gate electrode; a bank on the interlayer insulating layer and protruding in a thickness direction of the base layer; a color conversion layer between banks and including quantum dots that change a color of light; and a light emitting element on the color conversion layer, and a reflective electrode layer is on the bank.
Abstract:
A display panel may include a first display substrate and a second display substrate on the first display substrate. The second display substrate may include a plurality of pixel regions and a peripheral region adjacent to the pixel regions. The second display substrate may include a first color control pattern configured to emit light of a first color, a second color control pattern spaced apart from the first color control pattern in a first direction and configured to emit light of a second color different from the first color, and first and second light-blocking patterns in the peripheral region between the first and second color control patterns. The first and second light-blocking patterns may be spaced apart from each other, in a second direction crossing the first direction, to define a gap region.
Abstract:
A color conversion panel includes a first color conversion layer, a second color conversion layer, and a light wavelength conversion layer. The first color conversion layer includes a first semiconductor nanocrystal set for providing red light. The second color conversion layer neighbors the first color conversion layer and includes a second semiconductor nanocrystal set for providing first green light. The light wavelength conversion layer neighbors the second light conversion layer, may provide blue light, and includes a third semiconductor nanocrystal set for providing second green light.