Abstract:
A display device includes a display part including an organic light emitting diode (OLED) connected to a pixel circuit connected to a scan line and a sensing scan line, a signal generator configured to generate at least one display output enable (OE) signal during an image display period; and generate at least one sensing OE signal during a sensing period; and a scan driver including a display scan signal terminal connected to the scan line and a sensing scan signal terminal connected to the sensing scan line, wherein the scan driver is configured to: generate a scan signal for turning on the switching transistor in response to the display OE signal during the image display period; and generate a sensing scan signal for turning on the sensing transistor in response to the sensing OE signal during the sensing period.
Abstract:
A display device includes a display part including an organic light emitting diode (OLED) connected to a pixel circuit connected to a scan line and a sensing scan line, a signal generator configured to generate at least one display output enable (OE) signal during an image display period; and generate at least one sensing OE signal during a sensing period; and a scan driver including a display scan signal terminal connected to the scan line and a sensing scan signal terminal connected to the sensing scan line, wherein the scan driver is configured to: generate a scan signal for turning on the switching transistor in response to the display OE signal during the image display period; and generate a sensing scan signal for turning on the sensing transistor in response to the sensing OE signal during the sensing period.
Abstract:
A display device includes a display panel including a plurality of pixels, a second driving circuit that applies a gate signal to the plurality of pixels, and a first connecting member connected to the display panel on a first edge of the display panel. The first connecting member includes a control signal wiring connected to the second driving circuit. The display device further includes a flexible printed circuit board (FPCB) connected to the display panel on a second edge of the display panel. The second edge faces the first edge, and the FPCB includes a first driving circuit that applies a data voltage to the plurality of pixels.
Abstract:
A pixel including: an organic light emitting diode; a first transistor configured to control an amount of current that passes through the organic light emitting diode to flow to a second power from a first power that is connected to a first electrode of the first transistor corresponding to a voltage of a first node; a second transistor between a data line and the first node; a third transistor between the first node and a reference power; a fourth transistor between a second node and an initialization power, the second node being connected to an anode electrode of the organic light emitting diode; a first capacitor; and a second capacitor connected in series to the first capacitor, the first and second capacitors being between the first node and the first power.
Abstract:
During a period when an emission control signal is supplied to an emission control line connected to the pixel, a change in the voltage level of one node in the pixel, due to first leakage current through a first transistor and a second leakage current through a second transistor of the pixel, is compensated for by third leakage current through a third transistor in the pixel.
Abstract:
A flexible display panel having a first region, a second region, and a third region between the first region and the second region, the display panel including a first display portion on the first region and configured to display a first image, a second display portion on the second region and configured to display a second image, and a first drive portion on the third region and configured to drive at least one of the first display portion and the second display portion.
Abstract:
A display device comprises a pad terminal area and a first circuit board attached to the pad terminal area. The pad terminal area comprises a first pad terminal area having a first pad terminal row of first pad terminals and a second pad terminal area having a second pad terminal row of second pad terminals. The first circuit board comprises a first film having a first lead terminal row of first lead terminals and a second film having a second lead terminal row of second lead terminals. The first lead terminals are connected to the first pad terminals, the second lead terminals are connected to the second pad terminals, an end of the second film protrudes outward from an end of the first film, and the second pad terminal area overlaps an area between the end of the first film and the end of the second film.
Abstract:
A display device includes: a display unit including a plurality of pixels connected with data lines and scan lines with different lengths; a data driver configured to supply a data signal to the data lines; a scan driver configured to supply a scan signal to the scan lines; and a timing controller controlling the data driver to supply the data signal to the data lines at different output timings according to a position of a scan line to which the scan signal is supplied.
Abstract:
An organic light emitting display device including a scan driver configured to supply scan signals to scan lines, and configured to supply emission control signals to emission control lines, a data driver configured to supply data signals to data lines, pixels respectively including driving transistors configured to be initialized by a voltage of an initializing power source, an initializing power source generator configured to supply the voltage of the initializing power source to an initializing power source line commonly connected to the pixels, and a timing controller configured to control the scan driver, the data driver, and the initializing power source generator, wherein the initializing power source generator is configured to supply the initializing power source having different voltages during a first period in which the scan signals are supplied, and during a second period of a low frequency driving period in which the scan signals are not supplied.