Abstract:
A heterocyclic compound is represented by Formula 1 below and an organic light-emitting diode includes the heterocyclic compound. The heterocyclic compounds exhibit good electrical properties, high charge transporting and light-emitting capabilities, and high glass transition temperatures. Organic light-emitting diodes including the compounds of Formula 1 exhibit improved driving voltage, efficiency, brightness, and lifetime characteristics.
Abstract:
An amine-based compound and an organic light-emitting diode including the amine-based compound are provided. The amine-based compound may be used between a pair of electrodes of an organic light-emitting diode. For example, the amine-based compound may be used in an emission layer and/or between the emission layer and an anode (for example, in a hole injection layer, a hole transport layer, a functional layer having a hole injection ability and a hole transport ability). Accordingly, an organic light-emitting diode including a first electrode, a second electrode facing the first electrode, and an organic layer that is interposed between the first electrode and the second electrode, and includes the amine-based compound is provided.
Abstract:
A compound represented by Formula 1 below and an organic light-emitting device including the compound are provided: Substituents in Formula 1 are the same as defined in the specification.
Abstract:
A compound is represented by Formula 1, 2, or 3, and an organic light-emitting device includes the compound. The organic light-emitting device includes a first electrode, a second electrode, and an organic layer. The organic layer includes the compound represented by Formula 1, 2 or 3. A flat display apparatus includes the organic light-emitting device.
Abstract:
A silicon-based compound represented by Formula 1 below and an organic light-emitting device including the silicon-based compound are provided. According to one or more embodiments of the present invention, an organic light-emitting device includes: a substrate; a first electrode; a second electrode disposed opposite to the first electrode; and an organic layer disposed between the first electrode and the second electrode and including an emission layer, wherein the organic layer include at least one of the silicon compounds of Formula 1
Abstract:
A heterocyclic compound represented by Formula 1 below and an organic light-emitting device including the heterocyclic compound are provided: