Abstract:
A chip antenna includes a first ceramic substrate, a second ceramic substrate disposed to face the first ceramic substrate, a first patch disposed on the first ceramic substrate to operate as a feed patch, and a second patch disposed on the second ceramic substrate to operate as a radiation patch. One or both of the first ceramic substrate and the second ceramic substrate include a groove, and one or both of the first patch and the second patch is disposed in the groove of the respective first ceramic substrate and second ceramic substrate and protrudes from the groove.
Abstract:
A chip antenna includes a first ceramic substrate, a second ceramic substrate disposed to face the first ceramic substrate, a first patch disposed on one surface of the first ceramic substrate to operate as a feeding patch, a second patch disposed on the second ceramic substrate to operate as a radiation patch, at least one feed via penetrating through the first ceramic substrate in a thickness direction to provide a feed signal to the first patch, and a bonding pad disposed on a second surface of the first ceramic substrate opposite the first surface. A thickness of the first ceramic substrate is greater than a thickness of the second ceramic substrate.
Abstract:
A chip antenna includes a radiation portion having a block shape and a first surface and a second surface opposing each other, and configured to receive and radiate a feed signal as an electromagnetic wave; a first block made of a dielectric material and coupled to the first surface of the radiation portion; a second block made of a dielectric material and coupled to the second surface of the radiation portion; a ground portion having a block shape and coupled to the first block, and configured to reflect the electromagnetic wave radiated by the radiation portion back toward the radiation portion; and a director having a block shape and coupled to the second block, wherein an overall width of the ground portion, the first block, and the radiation portion is 2 mm or less, and the first block has a dielectric constant of 3.5 or more to 25 or less.
Abstract:
An antenna module includes a substrate having a first surface including a ground region and a feeder region; chip antennas mounted on the first surface of the substrate; and at least one patch antenna disposed inside of the substrate or at least partially disposed on a second surface of the substrate. The chip antennas include a body portion, a ground portion bonded to a first surface of the body portion, and a radiation portion bonded to a second surface of a body portion. The ground portion of each chip antenna is mounted on the ground region and the radiation portion of each chip antenna is mounted on the feeder region.
Abstract:
Provided is a composite for manufacturing a chip part for a high frequency, and the composite includes a magnetic powder having a relatively spherical shape, and a metal magnetic body particle having a relatively more amorphous shape than that of the magnetic powder and a lower hardness than that of the magnetic powder.
Abstract:
A chip patch antenna includes an upper dielectric layer including a first dielectric material and a second dielectric material having different dielectric constants from each other and bonded to each other in a planar direction, a first patch antenna electrode and a second patch antenna electrode respectively disposed on one side of each of the first dielectric material and the second dielectric material, a lower dielectric layer spaced from the first dielectric material and the second dielectric material in a thickness direction, and a third patch antenna electrode and a fourth patch antenna electrode disposed on one side of the lower dielectric layer.
Abstract:
A chip antenna includes a first substrate, a second substrate overlapping the first substrate, a first patch, provided on a first surface of the first substrate, operating as a feed patch, a second patch, provided on the second substrate, operating as a radiation patch, at least one feed via penetrating through the first substrate in a thickness direction and configured to provide a feed signal to the first patch, and a ground pad provided on the other surface of the first substrate. The first substrate comprises a ceramic sintered material. The ceramic sintered material comprises an Mg2SiO4 phase, an MgAl2O4 phase, and a CaTiO3 phase, and a content of the CaTiO3 phase in the ceramic sintered material ranges from 5.1 mol % to 15.1 mol %.
Abstract:
An antenna module includes a substrate having a first surface including a ground region and a feeder region; chip antennas mounted on the first surface of the substrate; and at least one patch antenna disposed inside of the substrate or at least partially disposed on a second surface of the substrate. The chip antennas include a body portion, a ground portion bonded to a first surface of the body portion, and a radiation portion bonded to a second surface of a body portion. The ground portion of each chip antenna is mounted on the ground region and the radiation portion of each chip antenna is mounted on the feeder region.
Abstract:
A chip antenna includes a first ceramic substrate, a second ceramic substrate disposed to oppose the first ceramic substrate, a first patch, disposed on the first ceramic substrate, configured to operate as a feed patch, a second patch, disposed on the second ceramic substrate, configured to operate as a radiation patch, an insertion member disposed between the first ceramic substrate and the second ceramic substrate, and a shielding layer disposed on a side surface of the insertion member.
Abstract:
A chip antenna includes a first dielectric substrate, a second dielectric substrate spaced apart from and opposing the first dielectric substrate, a first patch disposed on the first dielectric substrate, a second patch disposed on the second dielectric substrate, and a mounting pad and a feed pad disposed on a mounting surface of the first dielectric substrate. The first dielectric substrate, mounted on a mounting substrate through the mounting pad, is electrically connected to the mounting substrate through the feed pad. One of the first dielectric substrate and the second dielectric substrate is formed of ceramic and another is formed of polytetrafluoroethylene (PTFE).