Abstract:
Disclosed is a 5G or pre-5G communication system to be provided for supporting a data transmission rate higher than that of a 4G communication system such as LTE. According to one embodiment of the present invention, a method by which a device for adjusting the interference of a plurality of base stations transmits and receives data to and from the plurality of base stations comprises: receiving channel information of a terminal connected to one or more macro base stations or to one or more small base stations from the one or more macro base stations or the one or more small base stations; receiving ABS pattern information from the one or more macro base stations; generating, for each base station, interference control information for the one or more macro base stations or the one or more small base stations on the basis of the ABS pattern information and the channel information of the terminal connected to the one or more macro base stations or to the one or more small base stations; and transmitting, to each base station, the interference control information generated for each base station.
Abstract:
The present disclosure relates to a communication method and system for converging a 5th-Generation (5G) communication system for supporting higher data rates beyond a 4th-Generation (4G) system with a technology for Internet of Things (IoT). The present disclosure may be applied to intelligent services based on the 5G communication technology and the IoT-related technology, such as smart home, smart building, smart city, smart car, connected car, health care, digital education, smart retail, security and safety services. A transmission control method and a central management apparatus for performing the method are provided. The method includes receiving transmission control-related information from a base station, determining transmission power of at least one base station and the transmission point of a user equipment based on the transmission control-related information, and transmitting information about the determined transmission power and transmission point of the user equipment to the at least one base station. Furthermore, a base station adjusting transmission power and an operation method of the base station may be controlled under the control of the central management apparatus.
Abstract:
The present disclosure relates to a pre-5th-generation (5G) or 5G communication system to be provided for supporting higher data rates beyond 4th-generation (4G) communication system such as long term evolution (LTE). In a feedback method of a terminal, receiving a first subframe from a base station, detecting, from the first subframe, downlink control information (DCI) including transmission timing information and frequency resource information for feedback, creating feedback information for data decoding of the first subframe to be transmitted in a second subframe determined based on the DCI, and transmitting the feedback information, based on a time resource indicated from the transmission timing information and a frequency resource indicated from the frequency resource information in the DCI.
Abstract:
A method for scheduling by a base station is provided. The method includes updating a first time that is required to complete ongoing data transmission with respect to terminals to which the base station is transmitting the data for a predetermined period, updating a second time that is delayed from a scheduled data transmission completion time with respect to the terminals whenever the data transmission is completed, determining priority values on the basis of the updated first time and the updated second time with respect to the terminals for the predetermined period, and performing the scheduling of the resources with respect to one or more of the terminals on the basis of the determined priority values for the predetermined period.
Abstract:
The present invention relates to a method and an apparatus for an inter-cell load distribution and interference mitigation in a wireless communication system, and the inter-cell load distribution method by a first base station in a heterogeneous network wireless communication system including the first base station and a second base station for solving the above-described problem, comprises the steps of: setting a reserved area for the second base station so as to distribute an inter-cell load; and managing a terminal according to the reserved area.