Abstract:
There is disclosed an electrode including a substrate, a conductive material layer on the substrate, an insulating layer comprising an electrode layer on the conductive material layer, and a groove region in at least a portion of the insulating layer, and the electrode layer is extended into the groove region, and the conductive material layer is exposed to the groove region.
Abstract:
A device includes: a wireless power receiver configured to receive wireless power from an external device external to a body; a capacitor configured to store therein the wireless power received by the wireless power receiver; a wireless transceiver configured to transmit, to the external device, information associated with stored energy of the capacitor and scheduled energy to be used; and a processor configured to operate with the stored energy of the capacitor and process a biosignal of the body, wherein an operation of the external device and an operation of the device are synchronized, and a wireless power quantity of the wireless power to be received by the wireless power receiver from the external device is determined based on the information transmitted from the wireless transceiver to the external device.
Abstract:
A method of controlling power on a low-power device and the low-power device for performing the method are provided. The method includes performing a first operation, of acquiring sensing data, using power stored in an internal battery of the low-power device, wherein the first operation consumes a first power consumption from the internal battery; and performing a second operation, with respect to the acquired sensing data, and which consumes a second power consumption, using power wirelessly transmitted from an external device located outside of the low-power device, wherein the second power consumption is greater than the first power consumption.
Abstract:
A method and apparatus to authenticate a registered user are described. The method and apparatus include a processor configured to identify a first electrocardiogram (ECG) signal measured from the user, and determine a similarity between the first ECG signal and a second ECG signal based on the identified first ECG signal and the second ECG signal included in a reference ECG signal set. The processor is also configured to determine an authentication threshold corresponding to the reference ECG signal set, and determine whether to authenticate the first ECG signal measured from the user by comparing the determined similarity and the authentication threshold.
Abstract:
Provided are electrocardiogram (ECG)-based authentication and training. An authentication method includes generating a feature vector of an ECG obtained from an entity or a person based on a dictionary, classifying the ECG through a classifier based on the feature vector, and performing authentication based on a classification result.
Abstract:
An authentication apparatus includes an electrocardiogram (ECG) signal receiver configured to receive a target ECG signal, and a preprocessor configured to filter the target ECG signal. The apparatus further includes an authenticator configured to process the filtered target ECG signal based on a pattern of a reference ECG signal, and determine whether the target ECG signal corresponds to the reference ECG signal based on the processing.
Abstract:
A user authentication apparatus includes an electrocardiogram (ECG) waveform acquirer configured to acquire an authentication ECG waveform of a user to authenticate the user; a filter configured to filter the authentication ECG waveform using a Kalman filter by applying a reference model parameter extracted from a reference ECG waveform to the Kalman filter; and an authenticator configured to compare the filtered ECG waveform and the reference ECG waveform, and determine whether the filtered authentication ECG waveform corresponds to the reference ECG waveform based on a result of the comparing.