Abstract:
Provided are a light deflector and a light output device including the light deflector, the light deflector including a first electrode layer and a second electrode layer that are spaced apart from each other and facing each other, and a deflection layer configured to deflect incident light thereon based on a voltage applied to the first electrode layer and the second electrode layer, wherein the first electrode layer includes a plurality of electrode elements that are spaced apart from each other, and a resistor that is in contact with at least part of the plurality of electrode elements and in which a voltage drop is generated.
Abstract:
A beam deflector and a holographic three-dimensional image display apparatus employing the same are provided. The beam deflector deflects light through two stages by a first beam deflector that deflects the light in a first moving direction making an angle with a horizontal direction and a vertical direction, such that the deflected light is oriented to a first location, and a second beam deflector that deflects the light incident from the first beam deflector such that the light is deflected in a second moving direction making an angle with the horizontal direction and the vertical direction at the first location and is oriented to a second location.
Abstract:
A beam deflector, a holographic display device including the beam deflector, and a method of driving the beam deflector are provided. The beam deflector includes first electrodes spaced apart from each other on a first substrate, second electrodes spaced apart from each other on a second substrate, a liquid crystal layer between the first substrate and the second substrate, and a controller configured to cause active prisms to be formed in the liquid crystal layer and to form a floating zone by turning off a voltage of at least one of the first electrode and the second electrode disposed between adjacent ones of the active prisms.
Abstract:
A beam deflector and a three-dimensional (3D) display device including the beam deflector are provided. The beam deflector includes a first deflector configured to controllably deflect incident light having a first polarization state in a first horizontal direction; a half-wave plate configured to rotate a polarization of light transmitted by the first deflector by 90°; and a second deflector configured to controllably deflect light transmitted by the half-wave plate having the first polarization state in a second horizontal direction that is different from the first horizontal direction.
Abstract:
A beam expander and a displays including the beam expander are provided. The beam expander includes a holographic optical element (HOE) configured to generate collimated light by diffracting incident light incident thereon from a light source that emits coherent light. The beam expander also includes a diffraction optical element that diffracts light received from the HOE. The light source and the HOE may face each other with the diffraction optical element therebetween. Both the light source and the HOE may be arranged on a side of the diffraction optical element. The light source may be arranged above or below the diffraction optical element.
Abstract:
Provided is a backlight unit having high optical efficiency and a holographic display device including the backlight unit. The backlight unit includes a light source unit configured to provide a light beam, a first beam expander configured to mix the light beam provided from the light source unit, expand the light beam in a first direction, and output the mixed and expanded light beam as white light, and a second beam expander configured to expand the white light output from the first beam expander in a second direction perpendicular to the first direction and output the expanded white light as surface light.
Abstract:
Provided are a backlight unit and a holographic display apparatus including the same. The backlight unit includes a light guide plate; an input coupler configured to guide light into the light guide plate; a light deflector configured to deflect light emitted from the input coupler and guide the deflected light to propagate within the light guide plate. The light deflector is disposed on a region of the light guide plate which does not overlap with an optical path of light incident on the input coupler. The backlight unit also includes an output coupler configured to emit the light, having been propagated within the light guide plate, to an outside of the light guide plate.
Abstract:
A method of forming a light modulating signal for displaying a 3D includes preparing a plurality of data sets for 2D image data with different viewpoints; imposing a phase value the plurality of data sets, by which each of the 2D images is seen at a corresponding viewpoint; and superposing the 2D images.
Abstract:
Provided are an apparatus and a method for displaying a holographic three-dimensional (3D) image. The apparatus includes an image segmenter configured to segment an original image into a plurality of segments, and a calculator configured to calculate diffraction fringe pattern information for displaying each of the plurality of segments as a 3D holographic image. The image segmenter adjusts the number of the plurality of segments.
Abstract:
An apparatus and a method for displaying holographic 3D image are provided. The method includes generating, by a controller, a hologram signal to generate multiple identical hologram images which are shifted with respect to one another by a predetermined distance and overlapped on one another, and modulating, by a spatially light modulator (SLM), light incident on the SLM based on the hologram signal.