Abstract:
An interactive 3D display apparatus and method are provided. The interactive 3D display apparatus includes a hand sensing module configured to acquire a hand image by detecting a hand of a user and a user interaction module configured to generate a virtual object adjustment parameter by analyzing user-intended information about the hand based on the hand image acquired by the hand sensing module and comparing an analysis result with predefined user scenarios, an image rendering module configured to set a scene according to the generated virtual object adjustment parameter, generate image data by rendering the set scene, and convert the generated image data into display data, and a 3D display configured to display a 3D image including a virtual object in which a change intended by the user has been reflected according to the display data.
Abstract:
A holographic display apparatus includes a backlight unit having a light source configured to emit coherent light, a spatial light modulator configured to diffract incident light from the backlight unit and generate a holographic image, a beam deflector configured to change a traveling direction of the incident light from the backlight unit to change a focal position of the holographic image, an eye-tracking sensor configured to recognize positions of a viewer's eyeballs, and a controller configured to perform, in real time, calibration of the eye-tracking sensor and the beam deflector to focus the holographic image on the recognized positions of the viewer's eyeballs.
Abstract:
A see-through display device includes an optical coupler that couples first light input from a first direction and second light input from a second direction that is different from the first direction, the optical coupler transferring coupled light including the first light and the second light to an observer, and a shading member disposed in front of the optical coupler, the shading member transferring the second light to the optical coupler by reducing a light amount of the second light. The see-through display device limits a reflection phenomenon occurring between the optical coupler and the shading member.
Abstract:
A holographic display apparatus for providing an expanded viewing window includes a spatial filter configured to separate a plurality of holographic images generated by the hologram pattern displayed on the spatial light modulator from a plurality of lattice spots generated by a physical structure of the spatial light modulator. The spatial filter includes a plurality of color filters or a plurality of dichroic mirrors separating a first color image, a second color image, and a third color image from a first color lattice spot, a second color lattice spot, and a third color lattice spot.
Abstract:
A method of generating a hologram includes receiving three-dimensional (3D) image data, dividing 3D image data into data groups which are independent from one another, by a first processor; calculating, from at least one of the data groups, hologram values to be displayed at respective positions on a hologram plane, by the first processor; calculating, from at least another one of the data groups, hologram values to be displayed at the respective positions on the hologram plane by a second processor, and summing the calculated hologram values for each of the respective positions on the hologram plane, by the first processor or the second processor, or by the first processor and the second processor in parallel.
Abstract:
A holographic display apparatus for providing an expanded viewing window includes a spatial filter configured to separate a plurality of holographic images generated by the hologram pattern displayed on the spatial light modulator from a plurality of lattice spots generated by a physical structure of the spatial light modulator. The spatial filter includes a plurality of color filters or a plurality of dichroic mirrors separating a first color image, a second color image, and a third color image from a first color lattice spot, a second color lattice spot, and a third color lattice spot.
Abstract:
Provided are display apparatuses and electronic apparatuses that include the display apparatuses. The display apparatus may include an optical system that transfers a first image and a second image to an ocular organ of a user. The optical system may include at least two polarization-dependent lenses. Each of the two polarization-dependent lenses may have a focal length that varies based on a polarization state of incident light. The two polarization-dependent lenses may have optically different characteristics with respect to the first and second images. The display apparatus may further include at least one wave plate and/or at least one polarizer provided between the two polarization-dependent lenses or outside thereof.
Abstract:
A see-through type display apparatus includes a spatial light modulator configured to time-sequentially output a multi-layered two-dimensional (2D) image, a depth generator configured to generate a multi-layered depth image having pieces of different depth information from the multi-layered 2D image based on a focal distance that is a distance between the depth generator and a focus point of the multi-layered 2D image; and a light path change member configured to change at least one of a first transmission path of light corresponding to the multi-layered depth image and a second transmission path of external light corresponding to an external image, to thereby transmit the multi-layered depth image and the external image to a same area.
Abstract:
A method of forming a light modulating signal for displaying a 3D includes preparing a plurality of data sets for 2D image data with different viewpoints; imposing a phase value the plurality of data sets, by which each of the 2D images is seen at a corresponding viewpoint; and superposing the 2D images.
Abstract:
A see-through type display device includes a display panel configured to generate first image light, a beam splitter configured to reflect the first image light and generate second image light, and a light coupling lens including a first surface on which the second image light is incident and a second surface provided opposite to the first surface, the first surface being aspherical.