Abstract:
One or more embodiments provide a method and an apparatus for operating an interchangeable-lens camera system suitable for shooting of a high quality photo or moving picture. The camera system includes a main body and a lens unit mountable on and detachable from the main body and wirelessly accessible to the main body. The lens unit estimates position information between the lens unit and the main body using beam information of the lens unit formed via beamforming and beam information of the main body. The lens unit applies the estimated position information to shooting.
Abstract:
A method and apparatus for beamforming in a wireless communication system are provided. The method of supporting beamforming in a wireless communication device includes detecting a direction change of the wireless communication device while communicating with a peer device. The method of supporting beamforming in a wireless communication device also includes adjusting a beam direction for communication with the peer device based on information indicating a direction change of the wireless communication device.
Abstract:
A code reading method and a radar system using a short-range millimeter wave (mmWave) radar are provided. The method includes transmitting a mmWave radar signal to a target object from a radar system and receiving a reflection wave signal reflected on the target object, extracting reflection signal strengths for a plurality of line codes constituting the target object from the reflection wave signal, compensating for the reflection signal strengths considering a difference in antenna gain between the plurality of line codes as per an antenna radiation pattern of the radar system, forming a radar image using the compensated reflection signal strengths, and reading a binary code from the radar image.
Abstract:
A method and apparatus for beamforming in a wireless communication system are provided. The method of supporting beamforming in a wireless communication device includes detecting a direction change of the wireless communication device while communicating with a peer device. The method of supporting beamforming in a wireless communication device also includes adjusting a beam direction for communication with the peer device based on information indicating a direction change of the wireless communication device.
Abstract:
The present disclosure relates to a pre-5th-Generation (5G) or 5G communication system to be provided for supporting higher data rates Beyond 4th-Generation (4G) communication system such as Long Term Evolution (LTE). A terminal and method are provided for data signal transmission in a wireless communication system. The method includes receiving identification information of a band designated for the terminal; receiving a data signal generated based on resource allocation information on the band and an orthogonal frequency division multiple access (OFDMA) scheme; and demodulating and decoding the data signal based on the resource allocation information.
Abstract:
The present disclosure relates to a 5G or pre-5G communication system to be provided in order to support higher data rates after a 4G communication system, such as an LTE system. A method for receiving buffer status information by an access point in a wireless communication system is provided. In the method, a contention sub-slot and a dedicated sub-slot are determined for each station connected to the access point, a data trigger action frame is generated based on a first element including allocation information on the dedicated sub-slot to be used by a related station in a buffer status report (BSR) phase where each of the stations transmits buffer status information to the access point, the generated data trigger action frame is broadcasted to the stations, and a BSR frame transmitted based on the data trigger action frame is received from each of the stations.
Abstract:
The present disclosure relates to a pre-5th-Generation (5G) or 5G communication system to be provided for supporting higher data rates Beyond 4th-Generation (4G) communication system such as Long Term Evolution (LTE). The present invention provides a communication method in a wireless communication system. The method according to the present invention comprises the steps of: receiving, from a base station serving the station in a cellular network, information indicating a first transmission period of an access point serving the station in a wireless network; setting a first channel period, for communicating with the access point, based on the first transmission period, receiving, from the access point, information indicating a second transmission period determined by the access point; and updating the first channel period to a second channel period based on the second transmission period.
Abstract:
The present disclosure relates to a pre-5th-Generation (5G) or 5G communication system to be provided for supporting higher data rates Beyond 4th-Generation (4G) communication system such as Long Term Evolution (LTE). The present invention relates to a method and an apparatus in a communication system. A method of a network node in the communication system comprises the steps of: measuring at least one factor value indicating channel link performance of a channel link between the network node and another network node; identifying a beamforming training scheme based on the at least one factor value; and performing beamforming training with the another network node by means of the selected beamforming training method, thereby finding an optimal beam for maintaining services through the most efficient method according to a channel state and minimizing the time consumed for beamforming training.
Abstract:
The present disclosure relates to a sensor network, Machine Type Communication (MTC), Machine-to-Machine (M2M) communication, and technology for Internet of Things (IoT). The present disclosure may be applied to intelligent services based on the above technologies, such as smart home, smart building, smart city, smart car, connected car, health care, digital education, smart retail, security and safety services. Embodiments of the present invention provide a device and a method for estimating a position between wireless apparatuses using a signal transmitted and received between wireless apparatuses in a wireless communication system. A device of a first wireless apparatus for estimating a position comprises: a transceiver for transmitting and receiving a signal to and from a second wireless apparatus; and a position estimator for estimating a position of the second wireless apparatus using a signal transmitted and received through the transceiver. The position estimator comprises a range estimator for estimating the distance between the first wireless apparatus and the second wireless apparatus on the basis of a first time difference from a time point at which a request range packet is transmitted to the second wireless apparatus to a time point at which the reception of a response range packet transmitted from the second wireless apparatus is sensed and a second time difference from a time point at which the reception of the required range packet is sensed by the second wireless apparatus to a time point at which the response range packet is transmitted.