Abstract:
Provided are a method and apparatus for encoding a video by using block merging and a method and apparatus for decoding a video by using block merging. The method of encoding includes: determining an encoding mode indicating a current data unit for encoding of a picture and an encoding method including prediction encoding performed for the current data unit; determining an occurrence of merging with at least one neighboring data unit based on at least one of the encoding mode and a prediction mode; and determining prediction mode information, merging related information, and prediction related information, and determining encoding information of the data unit including the prediction mode information, the merging related information, and the prediction related information.
Abstract:
Provided is a video decoding method performed by a video decoding apparatus, the video decoding method including: determining prediction mode information of a current block and an index indicating a prediction candidate, from a bitstream; determining a prediction candidate list according to the prediction mode information; when the prediction mode information of the current block indicates a pre-set prediction mode, determining a motion vector indicated by the index indicating the prediction candidate from the prediction candidate list, and determining a prediction motion vector of the current block based on at least one of pieces of motion prediction information related to the motion vector; and determining a motion vector of the current block based on the prediction motion vector, wherein the pre-set prediction mode is a prediction mode different from a skip mode and a merge mode.
Abstract:
Provided is a video decoding method performed by a video decoding apparatus, the video decoding method including: determining prediction mode information of a current block and an index indicating a prediction candidate, from a bitstream; determining a prediction candidate list according to the prediction mode information; when the prediction mode information of the current block indicates a pre-set prediction mode, determining a motion vector indicated by the index indicating the prediction candidate from the prediction candidate list, and determining a prediction motion vector of the current block based on at least one of pieces of motion prediction information related to the motion vector; and determining a motion vector of the current block based on the prediction motion vector, wherein the pre-set prediction mode is a prediction mode different from a skip mode and a merge mode.
Abstract:
A motion vector encoding apparatus includes: a predictor configured to obtain motion vector predictor candidates of a plurality of predetermined motion vector resolutions by using a spatial candidate block and a temporal candidate block of a current block, and to determine motion vector predictor of the current block, a motion vector of the current block, and a motion vector resolution of the current block by using the motion vector predictor candidates; and an encoder configured to encode information representing the motion vector predictor of the current block, a residual motion vector between the motion vector of the current block and the motion vector predictor of the current block, and information representing the motion vector resolution of the current block, wherein the plurality of predetermined motion vector resolutions include a resolution of a pixel unit that is greater than a resolution of one-pel unit.
Abstract:
Provided is a video decoding method of applying a deblocking filter to neighboring pixels adjacent to a boundary of a current block, the video decoding method including selecting a deblocking filter to be applied to the neighboring pixels from among a plurality of deblocking filters according to pixel values of the neighboring pixels and a size of the current block, and applying the selected deblocking filter to the neighboring pixels, wherein the plurality of deblocking filters include three or more deblocking filters having different ranges of neighboring pixels to which deblocking filtering is applied.
Abstract:
Provided is a method of decoding motion information characterized in that information for determining motion-related information includes spatial information and time information, wherein the spatial information indicates a direction of spatial prediction candidates used for sub-units from among spatial prediction candidates located on a left side and an upper side of a current prediction unit, and the time information indicates a reference prediction unit of a previous picture used for prediction of the current prediction unit. Further, an encoding apparatus or a decoding apparatus capable of performing the above described encoding or decoding method may be provided.
Abstract:
Methods and apparatuses for encoding and decoding an intra prediction mode of a prediction unit of a chrominance component based on an intra prediction mode of a prediction unit of a luminance component are provided. When an intra prediction mode of a prediction unit of a luminance component is the same as an intra prediction mode in an intra prediction mode candidate group of a prediction unit of a chrominance component, reconstructing the intra prediction mode candidate group of the prediction unit of the chrominance component by excluding or replacing an intra prediction mode of the prediction unit of the chrominance component which is same as an intra prediction mode of the prediction unit of the luminance component from the intra prediction mode candidate group, and encoding the intra prediction mode of the prediction unit of the chrominance component by using the reconstructed intra prediction mode candidate group.
Abstract:
Provided is a video decoding method performed by a video decoding apparatus, the video decoding method including: determining prediction mode information of a current block and an index indicating a prediction candidate, from a bitstream; determining a prediction candidate list according to the prediction mode information; when the prediction mode information of the current block indicates a pre-set prediction mode, determining a motion vector indicated by the index indicating the prediction candidate from the prediction candidate list, and determining a prediction motion vector of the current block based on at least one of pieces of motion prediction information related to the motion vector; and determining a motion vector of the current block based on the prediction motion vector, wherein the pre-set prediction mode is a prediction mode different from a skip mode and a merge mode.
Abstract:
An encoding apparatus encoding a bitstream including an image frame is disclosed. The encoding apparatus comprises a selection unit for selecting a plurality of pixels including non-zero transform coefficients in a transform coefficient block constituting an image frame, an inverse transform unit for generating a plurality of groups of code candidates including combinations of codes assignable to the non-zero transform coefficients of the selected plurality of pixels and generating candidate reconstruction blocks by performing an inverse transform on each of the transform coefficient blocks in which the sign is assigned to the non-zero transform coefficients according to the generated plurality of groups of code candidates, a cost calculation unit for calculating a cost on the basis of a pixel value difference between pixel values of a plurality of pixels selected from among the generated candidate reconstruction blocks and pixel values of other pixels adjacent to the selected plurality of pixels and an encoding unit for assigning different predetermined codewords to a plurality of groups of code candidates on the basis of the calculated cost and encoding one codeword of the codewords into encoding information of non-zero transform coefficients of the selected plurality of pixels.
Abstract:
Entropy encoding and entropy decoding of image data are respectively performed whereby context modeling is performed on a context unit of blocks of the image data based on a context model of a previously encoded or decoded block.