Abstract:
Disclosed herein is convolutional neural network (CNN) system for generating a classification for an input image. According to an embodiment, the CNN system comprises a sequence of neural network layers configured to: derive a feature map based on at least the input image; puncture at least one selection among the feature map and a kernel by setting the value of one or more elements of a row of the at least one selection to zero according to a pattern and cyclic shifting the pattern by a predetermined interval per row to set the value of one or more elements of the rest of the rows of the at least one selection according to the cyclic shifted pattern; convolve the feature map with the kernel to generate a first convolved output; and generate the classification for the input image based on at least the first convolved output.
Abstract:
A system and method for characterizing an interference demodulation reference signal (DMRS) in a piece of user equipment (UE), e.g., a mobile device. The UE determines whether the serving signal is transmitted in a DMRS-based transmission mode; if it is, the UE cancels the serving DMRS from the received signal; otherwise the UE cancels the serving data signal from the received signal. The remaining signal is then analyzed for the amount of power it has in each of four interference DMRS candidates, and hypothesis testing is performed to determine whether interference DMRS is present in the signal, and, if so, to determine the rank of the interference DMRS, and the port and scrambling identity of each of the interference DMRS layers.
Abstract:
A computing system includes: an inter-device interface configured to receive receiver signal for communicating serving content through a communication channel; a communication unit, coupled to the inter-device interface, configured to: calculate a weighting set corresponding to a modular estimation mechanism, and generate a channel estimate based on the weighting set for characterizing the communication channel for recovering the serving content.
Abstract:
A method for training a generator, by a generator training system including a processor and memory, includes: extracting training statistical characteristics from a batch normalization layer of a pre-trained model, the training statistical characteristics including a training mean μ and a training variance σ2; initializing a generator configured with generator parameters; generating a batch of synthetic data using the generator; supplying the batch of synthetic data to the pre-trained model; measuring statistical characteristics of activations at the batch normalization layer and at the output of the pre-trained model in response to the batch of synthetic data, the statistical characteristics including a measured mean, and {circumflex over (μ)}ψ measured variance {circumflex over (σ)}ψ2; computing a training loss in accordance with a loss function Lψ based on μ, σ2, {circumflex over (μ)}ψ, and {circumflex over (σ)}ψ2; and iteratively updating the generator parameters in accordance with the training loss until a training completion condition is met to compute the generator.
Abstract:
A convolutional neural network (CNN) system for generating a classification for an input image is presented. The CNN system comprises circuitry running on clock cycles and configured to compute a product of two received values, and at least one non-transitory computer-readable medium that stores instructions for the circuitry to derive a feature map based on at least the input image; puncture at least one selection among the feature map and a kernel by setting the value of an element at an index of the at least one selection to zero and cyclic shifting a puncture pattern to achieve a 1/d reduction in number of clock cycles, where d is an integer and puncture interval value >1. The feature map is convolved with the kernel to generate an output, and a classification of the input image is generated based on the output.
Abstract:
A method for training a generator, by a generator training system including a processor and memory, includes: extracting training statistical characteristics from a batch normalization layer of a pre-trained model, the training statistical characteristics including a training mean μ and a training variance σ2; initializing a generator configured with generator parameters; generating a batch of synthetic data using the generator; supplying the batch of synthetic data to the pre-trained model; measuring statistical characteristics of activations at the batch normalization layer and at the output of the pre-trained model in response to the batch of synthetic data, the statistical characteristics including a measured mean {circumflex over (μ)}ψ and a measured variance {circumflex over (σ)}ψ2; computing a training loss in accordance with a loss function Lψ based on μ, σ2, {circumflex over (μ)}ψ, and {circumflex over (σ)}ψ2; and iteratively updating the generator parameters in accordance with the training loss until a training completion condition is met to compute the generator.
Abstract:
A convolutional neural network (CNN) system for generating a classification for an input image is presented. The CNN system comprises circuitry running on clock cycles and configured to compute a product of two received values, and at least one non-transitory computer-readable medium that stores instructions for the circuitry to derive a feature map based on at least the input image; puncture at least one selection among the feature map and a kernel by setting the value of an element at an index of the at least one selection to zero and cyclic shifting a puncture pattern to achieve a 1/d reduction in number of clock cycles, where d is an integer and puncture interval value>1. The feature map is convolved with the kernel to generate an output, and a classification of the input image is generated based on the output.
Abstract:
A system and method for removing bias from a frequency estimate. A simulation is used to predict, for various values of the signal to noise ratio, a bias in a raw frequency estimate produced by a frequency estimation algorithm. A straight line is fit to simulated frequency offset estimates as a function of true frequency offset, and the reciprocal of the slope of the line is stored, as a multiplicative bias removal term, in a lookup table, for the simulated signal to noise ratio. In operation, the raw frequency estimate is multiplied by a multiplicative bias removal term, obtained from the lookup table, to form a corrected frequency offset estimate.
Abstract:
A computing system includes: an antenna configured to receive a receiver signal for representing a serving signal and an interference signal; a communication unit, coupled to the antenna, configured to: calculate a decoding result based on the receiver signal, generate an interference modulation estimate based on the decoding result and the receiver signal, and calculate a content result based on the interference modulation estimate for representing the serving signal.
Abstract:
A nonvolatile memory device and method for fabricating the same are provided. The nonvolatile memory device comprising: a substrate; a mold structure including a first insulating pattern and a plurality of gate electrodes alternately stacked in a first direction on the substrate; and a word line cut region which extends in a second direction different from the first direction and cuts the mold structure, wherein the word line cut region includes a common source line, and the common source line includes a second insulating pattern extending in the second direction, and a conductive pattern extending in the second direction and being in contact with the second insulating pattern and a cross-section in the second direction.