Abstract:
A nonvolatile memory device with improved reliability is provided. The nonvolatile memory device comprises a substrate, a mold structure including a plurality of word lines stacked on the substrate, a first word line cut region configured to cut the mold structure, a first channel structure spaced apart from the first word line cut region by a first distance, and disposed in the mold structure and the substrate, and a second channel structure spaced apart from the first word line cut region by a second distance, and disposed in the mold structure and the substrate, wherein the second distance is greater than the first distance, a first width of the first channel structure is different from a second width of the second channel structure, and a first length of the first channel structure is different from a second length of the second channel structure.
Abstract:
A non-volatile memory device may include a channel structure including a first stacking structure, a second stacking structure, a first channel structure penetrating the first stacking structure, and a second channel structure penetrating the second stacking structure. The second channel structure includes a first portion having a width that decreases or is maintained as the first portion extends toward the substrate, and a second portion having a width that increases as the second portion extends toward the substrate.
Abstract:
Semiconductor devices and methods of fabricating the same are provided. The semiconductor device may include interconnections extending in a first direction on a substrate and spaced apart from each other in a second direction perpendicular to the first direction, barrier dielectric patterns disposed on top surfaces of the interconnections, respectively, and an upper interlayer dielectric layer disposed on the interconnection. Respective air gaps are disposed between adjacent ones of the interconnections.
Abstract:
Semiconductor devices and methods of fabricating the same are provided. The semiconductor device may include interconnections extending in a first direction on a substrate and spaced apart from each other in a second direction perpendicular to the first direction, barrier dielectric patterns disposed on top surfaces of the interconnections, respectively, and an upper interlayer dielectric layer disposed on the interconnection. Respective air gaps are disposed between adjacent ones of the interconnections.
Abstract:
A nonvolatile memory device and method for fabricating the same are provided. The nonvolatile memory device comprising: a substrate; a mold structure including a first insulating pattern and a plurality of gate electrodes alternately stacked in a first direction on the substrate; and a word line cut region which extends in a second direction different from the first direction and cuts the mold structure, wherein the word line cut region includes a common source line, and the common source line includes a second insulating pattern extending in the second direction, and a conductive pattern extending in the second direction and being in contact with the second insulating pattern and a cross-section in the second direction.
Abstract:
Provided are a semiconductor device and a method of manufacturing the semiconductor device. The semiconductor device includes a charge storage pattern formed on a substrate; a dielectric pattern formed on the charge storage pattern; a first conductive pattern including silicon doped with a first impurity of a first concentration, the first conductive pattern being disposed on the dielectric pattern; and a second conductive pattern including metal silicide doped with a second impurity of a second concentration, the second conductive pattern being disposed on the first conductive pattern. The first concentration may be higher than the second concentration.
Abstract:
Semiconductor devices and methods of fabricating the same are provided. The semiconductor device may include interconnections extending in a first direction on a substrate and spaced apart from each other in a second direction perpendicular to the first direction, barrier dielectric patterns disposed on top surfaces of the interconnections, respectively, and an upper interlayer dielectric layer disposed on the interconnection. Respective air gaps are disposed between adjacent ones of the interconnections.
Abstract:
Semiconductor devices and methods of fabricating the same are provided. The semiconductor device may include interconnections extending in a first direction on a substrate and spaced apart from each other in a second direction perpendicular to the first direction, barrier dielectric patterns disposed on top surfaces of the interconnections, respectively, and an upper interlayer dielectric layer disposed on the interconnection. Respective air gaps are disposed between adjacent ones of the interconnections.
Abstract:
A non-volatile memory device and a non-volatile memory system comprising the same are provided. The non-volatile memory device includes a first stack in which a first conductive pattern and a first dielectric layer are alternately stacked in a first direction on a substrate, a second stack in which a second conductive pattern and a second dielectric layer are alternately stacked in the first direction on the first stack opposite the substrate, a first monitoring channel structure that penetrates the first stack in the first direction, and a second monitoring channel structure that penetrates the second stack in the first direction and is =on the first monitoring channel structure. A width of a top of the first monitoring channel structure opposite the substrate is smaller than a width of a bottom of the second monitoring channel structure adjacent the top of the first monitoring channel structure.