Abstract:
A near-field transducer is situated at or proximate an air bearing surface of the apparatus and configured to facilitate heat-assisted magnetic recording on a medium. The near-field transducer includes an enlarged region comprising plasmonic material and having a first end proximate the air bearing surface. The near-field transducer also includes a disk region adjacent the enlarged region and having a first end proximate the air bearing surface. The disk region comprises plasmonic material. A peg region extends from the first end of the disk region and terminates at or proximate the air bearing surface. The near-field transducer further includes a region recessed with respect to the peg region. The recessed region is located between the peg region and the first end of the enlarged region.
Abstract:
Disclosed are plasmonic near-field transducers that are useful in heat-assisted magnetic recording. The disclosed plasmonic near-field transducers have an enlarged region and a flared region. In some embodiments the disclosed plasmonic near-field transducer can also include a peg region. The flared region can act as a heat sink and can lower the thermal resistance of the peg region of the near-field transducer, thus reducing its temperature. Also disclosed are methods that include delivering light to a magnetic transducer region via a waveguide, receiving the light at a plasmonic near-field transducer having an output end and disposed in proximity to the magnetic transducer region, and delivering a surface plasmon-enhanced near-field radiation pattern proximate the output end of the plasmonic transducer in response to receiving the light.
Abstract:
An apparatus (e.g., a heat assisted magnetic recording read/write element) that has an optical component that extends to a location adjacent a media-facing surface of a slider body. The apparatus further includes a planar plasmon antenna that is disposed between the tip portion of the magnetic write pole and the optical component. The planar plasmon antenna can be formed of a plasmonic material operationally capable of a plasmonic excitation in response to an evanescent coupling with an optical mode of the optical component. In some instances, the planar plasmon antenna includes an enlarged region spaced from the optical component and a peg region formed in the enlarged region. The peg region has a thickness in a direction substantially transverse to the optical component that is less than a thickness of a portion of the enlarged region that spaces the peg region from the optical component.
Abstract:
A recording head includes a near-field transducer proximate a media-facing surface. The near-field transducer includes an aperture surrounded by walls of plasmonic material and a notch protruding within the aperture. The walls are oriented normal to the media-facing surface. A write pole is proximate the near-field transducer. The write pole has a back surface facing away from the media-facing surface and an aperture-facing surface proximate the aperture. A heat sink layer of the plasmonic material is disposed along the back surface and the aperture-facing surface of the write pole. The heat sink layer is thermally and optically coupled to the near-field transducer.
Abstract:
A recording head includes a near-field transducer proximate a media-facing surface. The near-field transducer includes an aperture surrounded by walls of plasmonic material and a notch protruding within the aperture. The walls are oriented normal to the media-facing surface. A write pole is proximate the near-field transducer. The write pole has a back surface facing away from the media-facing surface and an aperture-facing surface proximate the aperture. A heat sink layer of the plasmonic material is disposed along the back surface and the aperture-facing surface of the write pole. The heat sink layer is thermally and optically coupled to the near-field transducer.
Abstract:
An apparatus that includes a storage layer and a heating assistance element. The heating assistance element is adjacent to the storage layer or doped into the storage layer. The heating assistance element is configured to enhance spatial confinement of energy from a field to an area of the storage layer to which the field is applied.
Abstract:
A compound magnetic data storage cell, applicable to spin-torque random access memory (ST-RAM), is disclosed. A magnetic data storage cell includes a magnetic storage element and two terminals communicatively connected to the magnetic storage element. The magnetic storage element is configured to yield any of at least three distinct magnetoresistance output levels, corresponding to stable magnetic configurations, in response to spin-momentum transfer inputs via the terminals.
Abstract:
The embodiments disclose a stack feature of a stack configured to confine optical fields within and to a patterned plasmonic underlayer in the stack configured to guide light from a light source to regulate optical coupling.
Abstract:
A write head includes a near-field transducer near a media-facing surface of the write head and a waveguide. The waveguide includes a core that overlaps or is co-planer with the near-field transducer at a first region. The core has a second region extending away from the near-field transducer to an energy source. The core has a third region between the first and second regions. The third region has a third crosstrack width that is less than first and second crosstrack widths of the first and second regions.
Abstract:
A near-field transducer includes an enlarged region having a top side adjacent to a magnetic pole, a base side opposite the top side, and a circumference that extends from proximal to a media-facing surface to distal to a media-facing surface. The near-field transducer includes a peg region in contact with a region of the bas side of the enlarged region, the peg region extending from the enlarged region towards the media-facing surface. The near-field transducer also includes a heat sink region having a contact side, a base side, and a circumference that extends from proximal to the media-facing surface to distal from the media-facing surface. The contact side of the heat sink region is in thermal contact with both the peg region and at least a region of the base side of the enlarged region.