摘要:
A method for determining the self-discharge current of a lithium-ion battery provided with a positive electrode, a negative electrode, and an electrolyte arranged between the positive and negative electrodes includes charging the battery until a metal lithium layer is formed between the electrolyte and the negative electrode, measuring the open-circuit voltage of the battery at two moments, and determining the self-discharge current from the variation of the voltage measured between the two moments.
摘要:
The present invention relates to a process for preparing composite materials comprising an electrode active compound of formula AaDdMmZzOoNnFf, such as an alkali metal ion, such as a lithium ion, insertion compound, and an electronically conducting compound, such as carbon, in which a homogeneous mixed precursor containing all the elements A, D, M, Z, O, N and F forming the electrode active compound and also one or more organic and/or organometallic compounds are thermally decomposed, in a short period of time, so as to obtain the composite material. These composite materials in particular find their application in devices containing said compounds and/or active materials, such as electrochemical devices and batteries, in particular lithium batteries.
摘要:
The present invention relates to a method for charging a lithium-ion accumulator with a negative electrode at an operating potential larger than 0.5 volts relatively to the Li+/Li pair, which comprises a first charging step at a constant voltage between 2 volts and 5 volts.
摘要:
A microbattery comprises, in the form of thin layers, at least first and second electrodes between which a solid electrolyte is disposed. The first electrode and the electrolyte both comprise at least one common grouping of [XY1Y2Y3Y4] type, where X is located in a tetrahedron whose peaks are respectively formed by the chemical elements Y1, Y2, Y3 and Y4, the chemical element X being selected from the group consisting of phosphorus, boron, silicon, sulphur, molybdenum, vanadium and germanium and the chemical elements Y1, Y2, Y3 and Y4 being selected from the group consisting of sulphur, oxygen, fluorine and chlorine.
摘要翻译:微电池以薄层的形式包括至少第一和第二电极,其间设置固体电解质。 第一电极和电解质都包括至少一个共同的分组[XY 1 / Y 2 Y 3 Y 3 Y 4 >]型,其中X位于四面体中,其峰分别由化学元素Y 1,Y 2,Y 3 3和Y 3, Y 4,化学元素X选自磷,硼,硅,硫,钼,钒和锗,化学元素Y 1,Y 3, SO 2,Y 3和Y 4选自硫,氧,氟和氯。
摘要:
The subject of the present invention is a lithium electrochemical generator comprising two peripheral electrodes—one positive and the other negative—each comprising an electrically conductive substrate (13, 21) and an active layer (14, 20) that includes an active material, at least one bipolar electrode comprising a positive active layer (18) on a first electrically conductive substrate and a negative active layer (16) on a second electrically conductive substrate, the said substrates being fixed together and two separators (15, 19) flanking each bipolar electrode, in which generator the electrically conductive substrates of each bipolar electrode are made of identical or different materials chosen from aluminium and its alloys and the negative active material of the bipolar electrode prevents an aluminium alloy being obtained with the electrically conductive substrates, under the operating conditions of the storage battery.
摘要:
The invention relates to an all-solid-state lithium battery and to a method for producing such a battery. The all-solid-state lithium battery includes first and second electrodes separated by a solid electrolyte. The second electrode is formed by a composite material including an electrochemically-active material made of a lithium-ion insertion material, and an amorphous lithium-based material which is an ionic conductor for the lithium ions and which is inert relative to the electrochemically active material.
摘要:
The present invention relates to a process for preparing composite materials comprising an electrode active compound of formula AaDdMmZzOoNnFf, such as an alkali metal ion, such as a lithium ion, insertion compound, and an electronically conducting compound, such as carbon, in which a homogeneous mixed precursor containing all the elements A, D, M, Z, O, N and F forming the electrode active compound and also one or more organic and/or organometallic compounds are thermally decomposed, in a short period of time, so as to obtain the composite material. These composite materials in particular find their application in devices containing said compounds and/or active materials, such as electrochemical devices and batteries, in particular lithium batteries.
摘要:
Lithium insertion compound having the following formula (I): LiαMβM1vM2wM3xM4yM5zBγ(XO4−εZε)1 (I) M is selected from V2+, Mn2+, Fe2+, Co2+ and Ni2+; M1 is selected from Na+ and K+; M2 is selected from Mg2+, Zn2+, Cu2+, Ti2+, and Ca2+; M3 is selected from Al3+, Ti3+, Cr3+, Fe3+, Mn3+, Ga3+, and V3+; M4 is selected from Ti4+, Ge4+, Sn4+, V4+, and Zr4+; M5 is selected from V5+, Nb5+, and Ta5+; X is an element in oxidation state m, exclusively occupying a tetrahedral site and coordinated by oxygen or a halogen, which is selected from B3+, Al3+, V5+, Si4+, P5+, S6+, Ge4+ and mixtures thereof; Z is a halogen selected from F, Cl, Br and I; the coefficients α, β, v, w, x, y, z, γ and ε are all positive and satisfy the following equations: 0≦α≦2 (1) 1≦β≦2 (2); 0
摘要:
The invention relates to the preparation of insertion compounds based on manganese oxide, usable as the positive electrode active material in a lithium battery. These compounds in the hatched area of FIG. 1 can be prepared by reacting in the solid state a manganese oxide powder MnO.sub.2 -.beta., having a specific surface below 7 m.sup.2 /g and an average grain size below 10 .mu.m, with a powder of a lithium compound such as Li.sub.2 CO.sub.3 or LiOH, at a temperature of 150.degree. to 500.degree. C. for an adequate time to convert the .beta.-MnO.sub.2 into manganese and lithium oxide having a lacunary or stoichiometric spinel structure.