Abstract:
A liquid crystal display includes a gate line formed on a lower substrate, a storage line formed on the lower substrate, and a data line formed on the lower substrate crossing and insulated from the gate line and the storage line. The liquid crystal display also includes a pixel electrode formed on the lower substrate crossing and insulated from the storage line. The pixel electrode has a first aperture pattern. The liquid crystal display further includes a common electrode formed on an upper substrate and having a second aperture pattern, and a storage electrode connected to the storage line. The storage electrode overlaps the second aperture pattern. The storage line, first aperture pattern, and second aperture pattern each includes a straight portion slanting to the gate line. A long axis of a liquid crystal molecule is arranged perpendicular to a substrate when an electric field is not applied.
Abstract:
Liquid crystal material is interposed between an upper panel and a lower panel. The lower panel includes signal transmitting wires including a gate wire and a data wire, thin film transistors connected to the signal transmitting wires and pixel electrodes connected to the thin film transistors, and the upper panel includes color filters, a black matrix and a common electrode. The pixel electrodes and the common electrode have apertures partitioning the pixel electrode into several domains. In addition, the director of liquid crystal molecules contained in the liquid crystal material is aligned perpendicular to the upper panel and the lower panel in absence of electric field between the pixel electrodes and the common electrode. The dielectric anisotropy of the liquid crystal material has a value ranging −4.0 to −5.5.
Abstract:
Saw-shaped protrusions, which are parallel to each other, are formed on the common electrode and the pixel electrode in two substrates. Protrusions in two substrates are arranged alternately and the bent portions of the saw-shaped protrusions are placed on the line transverse passing through the center of a pixel. Branches extend from the convex point of one saw-shaped protrusion toward the apex to the other saw-shaped protrusion, and another branch extend from the point where the protrusion meets the boundary of the pixel electrode toward the point where the boundary of the pixel electrode and the saw-shaped protrusion make an acute angle. A liquid crystal layer between two electrodes are divided to four regions where the directors of the liquid crystal layer have different angles when a voltage is applied to the electrodes, and then, wide viewing angle is obtained. In most regions, protrusions are formed straight and the protrusions have only obtuse angles at the bent points. Therefore, fast response time is shortened, disclination is removed and luminance increases.
Abstract:
A thin film transistor array substrate is provided with a gate line assembly, a data line assembly, and thin film transistors. The data line assembly crosses over the gate line assembly while defining pixel regions. A pixel electrode is formed at each pixel region. A color filter substrate is provided with a black matrix, and color filters of red, green and blue are formed at the black matrix at the pixel regions. An overcoat layer covers the color filters, and a common electrode is formed on the overcoat layer with an opening pattern. The thin film transistor array substrate, and the color filter substrates face each other, and a liquid crystal material is injected between the thin film transistor array substrate, and the color filter substrate. The blue color filter has a thickness larger than the red color filter or the green color filter such that the liquid crystal cell gap at the blue color filter is smaller than the liquid crystal cell gap at the red or green color filter.
Abstract:
Two electrodes parallel to each other are formed on one of two substrates, homeotropic alignment films are formed on the substrates and a liquid crystal material having positive dielectric anisotropy is injected between the substrates. When a voltage is appled to the two electrodes, a parabolic electric field between the electrodes drives the liquid crystal molecules. Since the generated electric field is symmetrical with respect to the boundary-plane equal distance from each of the two electrodes, the liquid crystal molecules are symmetrically aligned with respect to the boundary-plane, and the optical characteristic is compensated in both regions divided by the boundary-plane, thereby obtaining a wide viewing angle. The electric field does not exert influences on the liquid crystal molecules on the boundary-plane since the electric field on the boundary-plane is parallel to the substrates and perpendicular to the two electrodes and thus, it is perpendicular to the liquid crystal molecules. Here, the polarization of the light is changed while passing through the liquid crystal layer and as a result, only a part of the light passes through the polarizing plate The transmittance of the light can be varied by controlling the magnitude of voltage applied to the two electrodes. The alignment direction of the liquid crystal molecules is changed in both regions of a bent portion of the electrodes by forming the electrodes in the saw shape in a pixel or in by pixel, and the retardation of the light is compensated, thereby obtaining a wider viewing angle.
Abstract:
Two electrodes parallel to each other are formed on one of two substrates, homeotropic alignment films are formed on the substrates and a liquid crystal material having positive dielectric anisotropy is injected between the substrates. When a voltage is applied to the two electrodes, a parabolic electric field between the electrodes drives the liquid crystal molecules. Since the generated electric field is symmetrical with respect to the boundary-plane equal distance from each of the two electrodes, the liquid crystal molecules are symmetrically aligned with respect to the boundary-plane, and the optical characteristic is compensated in both regions divided by the boundary-plane, thereby obtaining a wide viewing angle. The electric field does not exert influences on the liquid crystal molecules on the boundary-plane since the electric field on the boundary-plane is parallel to the substrates and perpendicular to the two electrodes: and thus, it is perpendicular to the liquid crystal molecules. Here, the polarization of the light is changed while passing through the liquid crystal layer and as a result, only a part of the light passes through the polarizing plate. The transmittance of the light can be varied by controlling the magnitude of voltage applied to the two electrodes. The alignment direction of the liquid crystal molecules is changed in both regions of a bent portion of the electrodes by forming the electrodes in the saw shape in a pixel or in by pixel, and the retardation of the light is compensated, thereby obtaining a wider viewing angle.
Abstract:
Saw-shaped protrusions, which are parallel to each other, are formed on the common electrode and the pixel electrode in two substrates. Protrusions in two substrates are arranged alternately and the bent portions of the saw-shaped protrusions are placed on the line transverse passing through the center of a pixel. Branches extend from the convex point of one saw-shaped protrusion toward the apex to the other saw-shaped protrusion, and another branch extend from the point where the protrusion meets the boundary of the pixel electrode toward the point where the boundary of the pixel electrode and the saw-shaped protrusion make an acute angle. A liquid crystal layer between two electrodes are divided to four regions where the directors of the liquid crystal layer have different angles when a voltage is applied to the electrodes, and then, wide viewing angle is obtained. In most regions, protrusions are formed straight and the protrusions have only obtuse angles at the bent points. Therefore, fast response time is shortened, disclination is removed and luminance increases.
Abstract:
A display substrate includes a base substrate, a first dielectric layer, a first lattice pattern, a second lattice pattern, and a second dielectric layer. The first lattice pattern is disposed on the first dielectric layer at a first color pixel region. The first lattice pattern includes a plurality of first nano metal wires. The second lattice pattern is disposed on the first dielectric layer at a second color pixel region. The second lattice pattern includes a plurality of second nano metal wires. The second nano metal wires have different dimensions from the first nano metal wires. The second dielectric layer covers the first nano metal wires and the second nano metal wires.
Abstract:
A liquid crystal display comprises two parallel spaced substrates and a liquid crystal layer with negative dielectric anisotropy interposed between the substrates. The ratio d/p, the cell gap d between the substrates to the pitch p of the liquid crystal layer, is equal to or less than 0.3, and the retardation value Δn*d may be in the range of 0.25-0.4. In absence of electric field, the liquid crystal molecules are arranged vertically to the substrates, and when the sufficient electric field is applied, the liquid crystal molecules are parallel to the substrates and twisted by 90° from one substrate to the other.
Abstract translation:液晶显示器包括两个平行间隔的衬底和介于各衬底之间的具有负介电各向异性的液晶层。 基板与液晶层的间距p之间的比d / p,单元间隙d等于或小于0.3,延迟值< Dgr; n * d可以在0.25-0.4的范围内。 在不存在电场的情况下,液晶分子与基板垂直配置,当施加足够的电场时,液晶分子平行于基板并从一个基板扭转90°。
Abstract:
Apertures are formed in the common electrode or in the pixel electrode of a liquid crystal display to form a fringe field. Storage capacitor electrodes are formed at the position corresponding to the apertures to prevent the light leakage due to the disclination caused by the fringe field. The apertures extend horizontally, vertically or obliquely. The apertures in adjacent pixel regions may have different directions to widen the viewing angle.