摘要:
A non-aqueous electrolyte secondary battery including a positive electrode containing a positive active material, a negative electrode containing a negative active material and a non-aqueous electrolyte, characterized in that lithium transition metal complex oxide A formed by allowing LiCoO2 to contain at least both of Zr and Mg and lithium transition metal complex oxide B having a layered structure and containing at least both of Mn and Ni as transition metals are mixed and used as said positive active material, and vinylene carbonate and divinyl sulfone are contained in said non-aqueous electrolyte.
摘要:
The storage characteristics in a charged state are improved in a non-aqueous electrolyte secondary battery containing a lithium cobalt oxide as a positive electrode active material. The non-aqueous electrolyte secondary battery includes a positive electrode containing a positive electrode active material; a negative electrode containing a negative electrode active material other than metallic lithium; and a non-aqueous electrolyte. The positive electrode active material contains a lithium cobalt oxide as its main component. The non-aqueous electrolyte contains 0.1 to 10 volume % of a compound having an ether group. The positive electrode active material and the negative electrode active material are contained so that the charge capacity ratio of the negative electrode to the positive electrode is from 1.0 to 1.2 when the battery is charged until the potential of the positive electrode reaches 4.4 to 4.5 V (vs. Li/Li+).
摘要:
The storage characteristics in a charged state are improved in a non-aqueous electrolyte secondary battery containing a lithium cobalt oxide as a positive electrode active material. The non-aqueous electrolyte secondary battery includes a positive electrode containing a positive electrode active material; a negative electrode containing a negative electrode active material other than metallic lithium; and a non-aqueous electrolyte. The positive electrode active material contains a lithium cobalt oxide as its main component. The non-aqueous electrolyte contains 0.1 to 10 volume % of a compound having an ether group. The positive electrode active material and the negative electrode active material are contained so that the charge capacity ratio of the negative electrode to the positive electrode is from 1.0 to 1.2 when the battery is charged until the potential of the positive electrode reaches 4.4 to 4.5 V (vs. Li/Li+)
摘要翻译:在含有钴酸锂作为正极活性物质的非水电解质二次电池中,充电状态下的储存特性得到改善。 非水电解质二次电池包括含有正极活性物质的正极; 含有金属锂以外的负极活性物质的负极; 和非水电解质。 正极活性物质以钴酸锂为主要成分。 非水电解质含有0.1〜10体积%的具有醚基的化合物。 包含正极活性物质和负极活性物质,使得当电池充电直至正极的电位达到4.4至4.5V(负极)时,负极与正极的充电容量比为1.0至1.2 vs. Li / Li +)
摘要:
A non-aqueous electrolyte secondary battery including a positive electrode containing a positive active material, a negative electrode containing a negative active material and a non-aqueous electrolyte, characterized in that lithium transition metal complex oxide A formed by allowing LiCoO2 to contain at least both of Zr and Mg and lithium transition metal complex oxide B having a layered structure and containing at least both of Mn and Ni as transition metals are mixed and used as said positive active material, and vinylene carbonate and divinyl sulfone are contained in said non-aqueous electrolyte.
摘要:
A nonaqueous electrolyte secondary battery comprising a positive electrode containing a positive active material, a negative electrode containing a negative active material and a nonaqueous electrolyte, wherein a lithium transition metal complex oxide A formed by allowing LiCoO2 to contain at least both of Zr and Mg and a lithium transition metal complex oxide B having a layered structure and containing at least both of Mn and Ni as transition metals and containing molybdenum (Mo) are mixed and used as said positive active material.
摘要:
A nonaqueous electrolyte secondary battery comprising a positive electrode containing a positive active material, a negative electrode containing a negative active material and a nonaqueous electrolyte, wherein a lithium transition metal complex oxide A formed by allowing LiCoO2 to contain at least both of Zr and Mg and a lithium transition metal complex oxide B having a layered structure and containing at least both of Mn and Ni as transition metals and containing molybdenum (Mo) are mixed and used as said positive active material.
摘要:
In a nonaqueous electrolyte secondary battery having a positive electrode containing a positive electrode active material, a negative electrode containing a negative electrode active material, and a nonaqueous electrolyte, as the positive electrode active material or as the negative electrode active material, a mixture containing molybdenum dioxide and lithium titanate in a weight ratio (molybdenum dioxide:lithium titanate) of 90:10 to 50:50 is used.
摘要:
In a nonaqueous electrolyte secondary battery having a positive electrode containing a positive electrode active material, a negative electrode containing a negative electrode active material, and a nonaqueous electrolyte, as the positive electrode active material or as the negative electrode active material, a mixture containing molybdenum dioxide and lithium titanate in a weight ratio (molybdenum dioxide:lithium titanate) of 90:10 to 50:50 is used.
摘要:
In a nonaqueous electrolyte secondary battery having a positive electrode containing a positive electrode active material, a negative electrode containing a negative electrode active material, and a nonaqueous electrolyte, as the positive electrode active material or as the negative electrode active material, a mixture containing molybdenum dioxide and lithium titanate in a weight ratio (molybdenum dioxide:lithium titanate) of 90:10 to 50:50 is used.
摘要:
A method of manufacturing an electrode having a current collector (1) and a plurality of active material layers (2, 3) formed on a surface of the current collector is provided. The method includes applying, one after another, a plurality of active material slurries in layers onto the surface of the current collector, each of the active material slurries containing a binder and a different active material from one another, to form the plurality of active material layers on the surface of the current collector, and thereafter, simultaneously drying all the active material slurries.