摘要:
A method of fabricating an LCD-on-silicon device, comprising the following steps. A semiconductor structure having a control transistor formed therein is provided. The control transistor having a source and a drain. An interlevel dielectric (ILD) layer over the semiconductor structure is provided. Source/drain (S/D) plugs contacting the source and drain through contact openings in said ILD layer are provided. M1 lines are formed over the ILD layer and connected to at least the S/D plugs. An M1 intermetal dielectric (IMD) layer is deposited and patterned over the M1 lines to form M1 contact openings exposing at least some of the M1 metal lines. M1 metal plugs are formed within the M1 contact openings and M2 metal islands connected to, and integral with, at least the M1 metal plugs. The M2 metal islands having exposed side walls. Sidewall spacers are formed on the exposed M2 metal islands side walls. A second M2 metallization layer is deposited and patterned over the M2 metal islands to form a shielding layer adjacent to and contiguous with the sidewall spacers. The M2 metal islands, sidewall spacers, and shielding layer form a light shielding layer. At least one additional dielectric and conductive layer is formed over the light shielding layer and the M1 intermetal dielectric (IMD) layer. LCD pixels are then formed thereover.
摘要:
A method for integrating salicide and self-aligned contact processes in the fabrication of logic circuits with embedded memory is described. Isolation areas are formed on a semiconductor substrate surrounding and electrically isolating device areas. Gate electrodes and associated source and drain regions are formed on and in the semiconductor substrate wherein the gate electrodes have silicon nitride sidewall spacers. A metal silicide layer is formed on the top surface of the gate electrodes and on the top surface of the semiconductor substrate overlying the source and drain regions associated with the gate electrodes using a salicide process. A poly-cap layer is deposited overlying the substrate. The poly-cap layer is selectively removed overlying one of the salicided source and drain regions where a self-aligned contact is to be formed, and overlying another of the salicided source and drain regions and a portion of its associated salicided gate electrode where a butted contact is to be formed. An insulating layer is deposited over the surface of the semiconductor substrate. The insulating layer is etched through to form simultaneously the planned self-aligned contact opening and the planned butted contact opening. The self-aligned contact opening and the butted contact opening are filled with a conducting layer to complete fabrication of the integrated circuit device.
摘要:
An apparatus and method for detecting defect sizes in polysilicon and source-drain semiconductor devices and methods for making the same. Implemented is a double bridge test structure that includes a resistor path of first semiconductor material, such as doped silicon comprising a plurality of strip segments and with interconnection segments. A plurality of strips of second semiconductor material having a substantially lower resistivity are connected to form parallel circuit interconnections with the corresponding strip segments. The test structure is formed by masking techniques wherein a prescribed mask region enables portions of the silicon resistor or deposited polysilicon to be selectively silicided to form silicide and polycide, respectively. One embodiment for testing for defects in a polysilicon layer uses polycide as the low-resistivity strips, enabling the testing of open and short-circuit defects. A second embodiment selectively silicides exposed portions of a source-drain resistor, thereby enabling testing for defects in a source-drain layer of a metal oxide semiconductor. Defect sizes are determined by comparing the measured resistance values with predetermined width and spacings of the strips.
摘要:
Defect scanner sensitivity and accuracy are improved for light scattering defect scanners and pattern matching defect scanners by calibrating the defect scanners to each die on a wafer using preset marks on the corresponding die. The marks have a predetermined size based on the sensitivity of the defect scanners and a predetermined position relative to the circuit pattern on the corresponding die. Alignment of the defect scanners to a specific die provides improvement in coordinate accuracy over alignment with respect to an entire wafer. A layout mapping defect filtering system collects defect scan data and determines the interaction between the detected defects and a circuit layout. The layout mapping defect filtering system provides automatic identification in real time of killer defects that cause failure of the completed integrated circuit, and classifies and analyzes defects to identify potential killer defects within specified defect classes to identify defective die. The system provides accurate yield estimation to determine whether a produced wafer should be scrapped, and also provides accumulated data for yield improvement studies including quality control and circuit redesign.
摘要:
An apparatus and method for selecting products to inspect for defects performs in-situ monitoring of a processing tool during a manufacturing processing step. The data from the in-situ monitoring for a test run of products is correlated by a neural network with data collected during inspection of the test products for defects. During a production run of products, the in-situ monitor data is provided to the neural network which, based on the input data and the correlation, predicts the values of the data that would be collected upon inspection of the products. Specific products from the production run are selected for inspection based upon the predicted values.
摘要:
An arrangement and method for detecting sequential processing effects on products to be manufactured in a manufacturing process orders a first set of the products in a first specified processing sequence for a first process step in the manufacturing process. In order to prevent any positional trend created at one process step from being carried over into the next process step, the first set of the products is re-ordered into a second, different specified processing sequence for a second process step in the manufacturing process. Data regarding responses of the first set of the products to the process steps are extracted. The extracted data are correlated with the first and second processing sequences and data analysis is performed on the correlated extracted data. These steps are repeated for subsequent sets of the products, so that although the specified processing sequence is different for each of the individual process steps for a set of products, the same processing sequences for the individual processing steps are used for subsequent sets of the products to be manufactured. Since the processing sequences are not randomized from set to set and do not have to be provided to a database, the amounts of interfacing and disk storage needed are greatly reduced.