Abstract:
The technology disclosed relates to formulating and refining field extraction rules that are used at query time on raw data with a late-binding schema. The field extraction rules identify portions of the raw data, as well as their data types and hierarchical relationships. These extraction rules are executed against very large data sets not organized into relational structures that have not been processed by standard extraction or transformation methods. By using sample events, a focus on primary and secondary example events help formulate either a single extraction rule spanning multiple data formats, or multiple rules directed to distinct formats. Selection tools mark up the example events to indicate positive examples for the extraction rules, and to identify negative examples to avoid mistaken value selection. The extraction rules can be saved for query-time use, and can be incorporated into a data model for sets and subsets of event data.
Abstract:
The disclosure relates to certain system and method embodiments for generating reports from unstructured data. In one embodiment, a method can include identifying events matching criteria of an initial search query (each of the events including a portion of raw machine data that is associated with a time), identifying a set of fields, each field defined for one or more of the identified events, causing display of an interactive graphical user interface (GUI) that includes one or more interactive elements enabling a user to define a report for providing information relating to the matching events (each interactive element enabling processing or presentation of information in the matching events using one or more fields in the identified set of fields), receiving, via the GUI, a report definition indicating how to report information relating to the matching events, and generating, based on the report definition, a report including information relating to the matching events.
Abstract:
The technology disclosed relates to formulating and refining field extraction rules that are used at query time on raw data with a late-binding schema. The field extraction rules identify portions of the raw data, as well as their data types and hierarchical relationships. These extraction rules are executed against very large data sets not organized into relational structures that have not been processed by standard extraction or transformation methods. By using sample events, a focus on primary and secondary example events help formulate either a single extraction rule spanning multiple data formats, or multiple rules directed to distinct formats. Selection tools mark up the example events to indicate positive examples for the extraction rules, and to identify negative examples to avoid mistaken value selection. The extraction rules can be saved for query-time use, and can be incorporated into a data model for sets and subsets of event data.
Abstract:
Embodiments include generating data models that may give semantic meaning for unstructured or structured data that may include data generated and/or received by search engines, including a time series engine. A method includes generating a data model for data stored in a repository. Generating the data model includes generating an initial query string, executing the initial query string on the data, generating an initial result set based on the initial query string being executed on the data, determining one or more candidate fields from one or results of the initial result set, generating a candidate data model based on the one or more candidate fields, iteratively modifying the candidate data model until the candidate data model models the data, and using the candidate data model as the data model.
Abstract:
The technology disclosed relates to formulating and refining field extraction rules that are used at query time on raw data with a late-binding schema. The field extraction rules identify portions of the raw data, as well as their data types and hierarchical relationships. These extraction rules are executed against very large data sets not organized into relational structures that have not been processed by standard extraction or transformation methods. By using sample events, a focus on primary and secondary example events help formulate either a single extraction rule spanning multiple data formats, or multiple rules directed to distinct formats. Selection tools mark up the example events to indicate positive examples for the extraction rules, and to identify negative examples to avoid mistaken value selection. The extraction rules can be saved for query-time use, and can be incorporated into a data model for sets and subsets of event data.
Abstract:
The disclosure relates to certain system and method embodiments for generating reports from unstructured data. In one embodiment, a method can include identifying events matching criteria of an initial search query (each of the events including a portion of raw machine data that is associated with a time), identifying a set of fields, each field defined for one or more of the identified events, causing display of an interactive graphical user interface (GUI) that includes one or more interactive elements enabling a user to define a report for providing information relating to the matching events (each interactive element enabling processing or presentation of information in the matching events using one or more fields in the identified set of fields), receiving, via the GUI, a report definition indicating how to report information relating to the matching events, and generating, based on the report definition, a report including information relating to the matching events.
Abstract:
The technology disclosed relates to formulating and refining field extraction rules that are used at query time on raw data with a late-binding schema. The field extraction rules identify portions of the raw data, as well as their data types and hierarchical relationships. These extraction rules are executed against very large data sets not organized into relational structures that have not been processed by standard extraction or transformation methods. By using sample events, a focus on primary and secondary example events help formulate either a single extraction rule spanning multiple data formats, or multiple rules directed to distinct formats. Selection tools mark up the example events to indicate positive examples for the extraction rules, and to identify negative examples to avoid mistaken value selection. The extraction rules can be saved for query-time use, and can be incorporated into a data model for sets and subsets of event data.
Abstract:
The technology disclosed relates to formulating and refining field extraction rules that are used at query time on raw data with a late-binding schema. The field extraction rules identify portions of the raw data, as well as their data types and hierarchical relationships. These extraction rules are executed against very large data sets not organized into relational structures that have not been processed by standard extraction or transformation methods. By using sample events, a focus on primary and secondary example events help formulate either a single extraction rule spanning multiple data formats, or multiple rules directed to distinct formats. Selection tools mark up the example events to indicate positive examples for the extraction rules, and to identify negative examples to avoid mistaken value selection. The extraction rules can be saved for query-time use, and can be incorporated into a data model for sets and subsets of event data.
Abstract:
The technology disclosed relates to formulating and refining field extraction rules that are used at query time on raw data with a late-binding schema. The field extraction rules identify portions of the raw data, as well as their data types and hierarchical relationships. These extraction rules are executed against very large data sets not organized into relational structures that have not been processed by standard extraction or transformation methods. By using sample events, a focus on primary and secondary example events help formulate either a single extraction rule spanning multiple data formats, or multiple rules directed to distinct formats. Selection tools mark up the example events to indicate positive examples for the extraction rules, and to identify negative examples to avoid mistaken value selection. The extraction rules can be saved for query-time use, and can be incorporated into a data model for sets and subsets of event data.
Abstract:
The technology disclosed relates to formulating and refining field extraction rules that are used at query time on raw data with a late-binding schema. The field extraction rules identify portions of the raw data, as well as their data types and hierarchical relationships. These extraction rules are executed against very large data sets not organized into relational structures that have not been processed by standard extraction or transformation methods. By using sample events, a focus on primary and secondary example events help formulate either a single extraction rule spanning multiple data formats, or multiple rules directed to distinct formats. Selection tools mark up the example events to indicate positive examples for the extraction rules, and to identify negative examples to avoid mistaken value selection. The extraction rules can be saved for query-time use, and can be incorporated into a data model for sets and subsets of event data.