摘要:
The field of the invention is that of solid-state laser gyros. One of the major problems inherent in this technology is that the optical cavity of this type of laser gyro is by nature highly unstable. To reduce this instability, controlled optical are introduced into the cavity that depend on the direction of propagation by using acoustooptic devices. Several devices are described, employing different configurations of acoustooptic devices. These devices apply in particular to laser gyros having monolithic cavities, and in particular to neodymium-doped YAG laser gyros.
摘要:
Solid-state gyrolaser having a device for stabilizing the intensities making it possible to maintain equilibrium of the two counter-propagating modes having at least a means for calculating a rotation measurement (Ω, IΩ) of the gyrolaser on the basis of the counter-propagating modes having a frequency difference (Δνmes) between them, by assuming that the frequency difference (Δνmes) between the two counter-propagating modes is induced only by the rotation of the cavity. The gyrolaser also includes a means for measuring the control command (Co), a means for storing a behavior model (Mo) of a frequency bias (Δνb) induced by the device for stabilizing the intensities, as a function of the control command, a means for calculating the frequency bias (Δνb) induced by the device for stabilizing the intensities, on the basis of the value of the control command (Co) and the model (Mo), a means for calculating the bias (ΔΩb, ΔIΩb) in the rotation measurement (Ω, IΩ), induced by the frequency bias (Δνb), and a means for compensating for the bias (ΔΩb, ΔIΩb) in the rotation measurement (Ω, IΩ).
摘要:
The field of the invention is that of solid-state laser gyros. One of the major problems inherent in this technology is that the optical cavity of this type of laser gyro is by nature highly unstable. To reduce this instability, the invention proposes to introduce, into the cavity, controlled optical losses that depend on the direction of propagation by using acoustooptic devices. Several devices are described, employing different configurations of acoustooptic devices. These devices apply in particular to laser gyros having monolithic cavities, and in particular to neodymium-doped YAG laser gyros.
摘要:
A longitudinally pumped laser including one or more active lasing media arranged in an optical laser cavity and at least one pumping device emitting at least one pumping beam toward the at least one active lasing medium. The pumped beam or beams is coupled with the active medium. At least one of the active lasing media includes one or more non-homogeneously doped zones, and the dimension of the doped zones and/or the distribution of the dopants is chosen on the basis of the desired transverse mode of the laser cavity. Such a laser can be used as an amplifier.
摘要:
The field of the invention is that of solid-state laser gyros. One of the major problems inherent in this technology is that the optical cavity of this type of laser is by its nature highly unstable. To reduce this instability, the invention proposes to introduce controlled optical losses into the cavity that depend on the polarization direction by placing in the cavity an optical assembly comprising a polarizing element, a first element exhibiting a reciprocal effect that acts on the polarization of the wave and a second element exhibiting a nonreciprocal effect that also acts on the polarization of the wave, at least one of these two effects being variable, and to electronically slave these losses to the difference in intensity between the counterpropagating modes. Several devices are described that implement either fixed reciprocal effects combined with variable nonreciprocal effects, or vice versa. These devices apply in particular to monolithic cavity lasers and especially to lasers of the neodymium-doped YAG type and also to fiber cavity lasers.
摘要:
The field of the invention is that of solid-state laser gyros. One of the major problems inherent in this technology is that the optical cavity of this type of laser is by its nature highly unstable. To reduce this instability, the invention proposes to introduce controlled optical losses into the cavity that depend on the polarization direction by placing in the cavity an optical assembly comprising a polarizing element, a first element exhibiting a reciprocal effect that acts on the polarization of the wave and a second element exhibiting a nonreciprocal effect that also acts on the polarization of the wave, at least one of these two effects being variable, and to electronically slave these losses to the difference in intensity between the counterpropagating modes. Several devices are described that implement either fixed reciprocal effects combined with variable nonreciprocal effects, or vice versa. These devices apply in particular to monolithic cavity lasers and especially to lasers of the neodymium-doped YAG type and also to fiber cavity lasers.
摘要:
A laser gyro having a solid-state amplifying medium and an optical ring cavity includes an assembly encompassing the optical cavity and able to experience an oscillating rotational motion, as well as at least one external optical device for longitudinal injection of energy into the solid-state amplifying medium. The laser gyro also includes a fixing assembly adapted for translationally and rotationally binding said assembly encompassing the optical cavity and said external optical device for longitudinal injection of energy.
摘要:
A laser gyro having a solid-state amplifying medium and an optical ring cavity includes an assembly encompassing the optical cavity and able to experience an oscillating rotational motion, as well as at least one external optical device for longitudinal injection of energy into the solid-state amplifying medium. The laser gyro also includes a fixing assembly adapted for translationally and rotationally binding said assembly encompassing the optical cavity and said external optical device for longitudinal injection of energy.
摘要:
Disclosed is an optical amplification device comprising an amplifier medium inserted between two mirrors and an optical pumping source. The mirrors are confocal mirrors whose focal plane is located in the vicinity of the center of the non-linear medium. This medium has a match-stick shape with a large axis in one direction forming an angle alpha/2 with the optical axis of the cavity defined by the two mirrors and the amplifier medium. This architecture enables an incident optical wave to pass several times within the amplification device leading to an increase in the performance characteristics of said device.