Abstract:
A system includes a carriage track positioned adjacent to a rotary milking platform, a robot carriage mounted to the carriage track, and a controller. The controller causes the robot carriage to move linearly along the carriage track in conjunction with a rotational movement of the rotary milking platform such that a first linear position of the robot carriage aligns with a first rotational position of a milking stall of the rotary milking platform and a second linear position of the robot carriage aligns with a second rotational position of the milking stall of the rotary milking platform.
Abstract:
A system includes a milking box and a robotic arm. The milking box comprises a stall portion that houses a dairy livestock with four teats. The robotic arm performs the following operation for a plurality of teats of the dairy livestock: retrieves a cup; attaches the cup to a teat; and detaches the cup from the teat. The cup is maintained within the stall portion of the milking box from the time that the cup is attached to a first teat of the dairy livestock through the time that the cup is attached to a last teat of the dairy livestock. The cup is retracted into an equipment area of the milking box after it is detached from the last teat of the dairy livestock.
Abstract:
A system for processing an image includes a three-dimensional camera that captures an image of a dairy livestock, wherein the image comprises a plurality of adjacent pixels, each pixel associated with a depth location. The system further includes a processor communicatively coupled to the three-dimensional camera. The processor determines that the depth locations of a first portion of the adjacent pixels fluctuate beyond a predetermined threshold over time, and discards the first portion of the adjacent pixels from the image based at least in part upon the determination.
Abstract:
A system comprises a memory operable to store first light intensity information for a first pixel of an image that includes a dairy livestock, and second light intensity information for a second pixel of the image. The system further comprises a processor communicatively coupled to the memory and operable to determine that a difference between the first light intensity information and the second light intensity information exceeds a threshold, and discard one of the first pixel or the second pixel from the image. The system further includes a robotic attacher configured to position milking equipment relative to the dairy livestock based at least in part upon the light intensity image, excluding the discarded pixel
Abstract:
A system comprises a memory operable to store first light intensity information for a first pixel of an image that includes a dairy livestock, and second light intensity information for a second pixel of the image. The system further comprises a processor communicatively coupled to the memory and operable to determine that a difference between the first light intensity information and the second light intensity information exceeds a threshold, and discard one of the first pixel or the second pixel from the image. The system further includes a robotic attacher configured to position milking equipment relative to the dairy livestock based at least in part upon the light intensity image, excluding the discarded pixel
Abstract:
A system includes a first milking box stall of a size sufficient to accommodate a first dairy livestock and a second milking box stall of a size sufficient to accommodate a second dairy livestock. The first and second milking box stalls face opposite directions. An equipment portion is located between the first milking box stall and the second milking box stall. A robotic attacher is housed in the equipment portion and configured to service both stalls at different times. The robotic attacher comprises a gripping portion having a spray nozzle. The gripping portion is operable to rotate around a longitudinal axis such that during a milking operation the spray nozzle is positioned on the bottom of the gripping portion, and after the milking operation the spray nozzle is positioned on the top of the gripping portion.
Abstract:
A system comprises a robotic arm, camera, and a controller. The camera is positioned on a surface of the robotic arm and emits a laser signal at an upward, non-zero angle relative to a longitudinal axis of the robotic arm. The controller instructs the robotic arm to grip a milking cup, and determines a position of a teat of the dairy livestock based at least in part upon the non-zero angle of the laser signal emitted by the camera. The controller instructs the robotic arm to move the milking cup towards the determined position of the teat between the hind legs of the dairy livestock from the rear, release the milking cup in response to the milking cup being attached to the teat. move in an upward direction towards an udder of the dairy livestock in conjunction with the robotic arm releasing the milking cup, and to move away from the teat.
Abstract:
A robotic attacher includes a main arm that is suspended vertically from a rail, and a supplemental arm that is coupled to and extends horizontally from the main arm along a longitudinal axis. The supplemental arm includes a pivot assembly that pivots a gripping portion around a vertical axis that is substantially parallel to the main arm of the robotic attacher, in a direction transverse to the longitudinal direction of the supplemental arm, and between at least a maximum-left position, a maximum-right position, and a centered position. The pivot assembly includes a first actuator that extends and retracts a first cable coupled to a left side of the gripping portion in order to pivot the gripping portion. The pivot assembly further includes a second actuator that extends and retracts a second cable coupled to a right side of the gripping portion in order to pivot the gripping portion.
Abstract:
A robotic attacher retrieves a preparation cup from an equipment area located behind a dairy livestock and attaches and detaches the preparation cup to the teats of the dairy livestock in sequence. The sequence comprises attaching and detaching the preparation cup to the left front teat, the right front teat, the right rear teat, and the left rear teat.
Abstract:
A system includes a milking box and a robotic arm. The milking box comprises a stall portion that houses a dairy livestock with four teats. The robotic arm performs the following operation for a plurality of teats of the dairy livestock: retrieves a cup; attaches the cup to a teat; and detaches the cup from the teat. The cup is maintained within the stall portion of the milking box from the time that the cup is attached to a first teat of the dairy livestock through the time that the cup is attached to a last teat of the dairy livestock. The cup is retracted into an equipment area of the milking box after it is detached from the last teat of the dairy livestock.