Abstract:
The disclosure relates to a method of automatically producing a three-dimensional (3D) segmentation of a heart chamber, the method comprising: obtaining data sets from cardiac magnetic resonance imaging (MRI) or ultrasound, generating a 3D segmentation of the heart chamber from the data sets using an active contour method, modifying the 3D segmentation by adding a plurality of intra-chamber structures; and identifying an enclosing myocardium using the 3D segmentation generated by the method.
Abstract:
An apparatus or method for minimizing the total accessing cost, such as minimizing repair bandwidth, delay or the number of hops including the steps of minimizing the number of nodes to be engaged for the recovery process using a polynomial-time solution that determines the optimal number of participating nodes and the optimal set of nodes to be engaged for recovering lost data, where in a distributed database storage system, for example a dynamic system, where the accessing cost or even the number of available nodes are subject to change results in different values for the optimal number of participating nodes. An MDS code is included which can be reused when the number of participating nodes varies without having to change the entire code structure and the content of the nodes.
Abstract:
Devices, systems and methods related to techniques for performing four-chamber segmentation of echocardiograms are disclosed. In one example aspect, a method for generating segmented image data based on an input echocardiogram includes receiving an input echocardiogram that includes information associated with four chambers of a heart, performing segmentation on the information associated with the four chambers using an adversarial model that comprises a first artificial neural network with multiple layers, and combining data from selected layers of the first artificial neural network to generate an output image that includes the segmented four chambers of the heart.
Abstract:
A method includes the step of interleaving training and feedback stages in a transmitter and a multiplicity of antennas, wherein the transmitter trains the corresponding ones of the multiplicity of antennas one by one and receives feedback information after training each one of the corresponding ones of the multiplicity of antennas. An apparatus operating using the method includes a multiple-input single-output system with t transmitter antennas, a short-term power constraint P, and target data rate ρ where for any t, the same outage probability as a system with perfect transmitter and receiver channel state information is achieved with a feedback rate of R1 bits per channel state and via training R2 transmitter antennas on average, where R1 and R2 are independent of t, and depend only on ρ and P.