SEMI-ACTIVE ROBOTIC JOINT
    23.
    发明申请

    公开(公告)号:US20220273469A1

    公开(公告)日:2022-09-01

    申请号:US17663610

    申请日:2022-05-16

    Abstract: A robotic joint comprises a first link, a middle link, a torque generator, a second link, and a locking mechanism. Different ends of the middle link are rotatably coupled to the first link and the second link. The torque generator is coupled to the first link and the middle link and is configured to produce torque between these links. The locking mechanism is switchable between a locking state and an unlocking state. In the unlocking state, the locking mechanism allows free rotation of the second link relative to the middle link in the first and second rotation directions. In the locking state, the locking mechanism is configured to impede rotation of the second link relative to the middle link in the first rotation direction and to allow rotation of the second link relative to the middle link in the second rotation direction opposite of the first rotation direction.

    Semi-active robotic joint
    24.
    发明授权

    公开(公告)号:US11369494B2

    公开(公告)日:2022-06-28

    申请号:US15631553

    申请日:2017-06-23

    Abstract: A robotic joint includes a first link, a middle link, a torque generator, a second link, and a locking mechanism. Different ends of the middle link are rotatably coupled to the first link and the second link. The torque generator is coupled to the first link and the middle link and is configured to produce a torque between these links. The locking mechanism is switchable between a locking state and an unlocking state. In the unlocking state, the locking mechanism allows free rotation of the second link relative to the middle link in the first and second rotation directions. In the locking state, the locking mechanism is configured to impede rotation of the second link relative to the middle link in the first rotation direction and to allow rotation of the second link relative to the middle link in the second rotation direction opposite of the first rotation direction.

    Arm supporting exoskeleton with a variable force generator

    公开(公告)号:US10994409B2

    公开(公告)日:2021-05-04

    申请号:US16997742

    申请日:2020-08-19

    Abstract: Described herein is an arm supporting exoskeleton, comprising an arm link mechanism. The arm link mechanism comprises a proximal link, a distal link, an arm coupler, and a variable force generator. The distal link is rotatable relative to the proximal link. The arm coupler is adapted to couple an upper arm of a person to the distal link. The variable force generator comprises a first spring and a second spring, configured to create a torque between the proximal link and the distal link. In the first force mode, the variable force generator exhibits a first stiffness rate defined by the first spring that supports the upper arm of the person against gravity forces and. In the second force mode, the variable force generator exhibits a second stiffness rate defined by the first spring and the second spring that supports the upper arm of the person against the gravity forces.

    Controllable passive artificial knee

    公开(公告)号:US10682249B2

    公开(公告)日:2020-06-16

    申请号:US14641039

    申请日:2015-03-06

    Abstract: An exoskeleton (100) adapted to be coupled to a lower extremity of a person includes a thigh link (102), a shank link (104) and a knee joint (106) allowing flexion and extension between the thigh and shank links (102, 104). A torque generator (156) connected to the knee joint (106) includes a wrap spring (110) having a first end (112) coupled to the thigh link (102), and a second end (118) coupled to an electric actuator (116) capable of selectively positioning the second end (118) of the wrap spring (110). A controller (120) causes the electric actuator (116) to position the wrap spring (110) to provide a selective torque between the thigh and shank links (102, 104) based on a signal (212, 214, 216) produced by a sensor (164, 166, 168).

    ARM SUPPORTING EXOSKELETON WITH A VARIABLE FORCE GENERATOR

    公开(公告)号:US20190321965A1

    公开(公告)日:2019-10-24

    申请号:US16455899

    申请日:2019-06-28

    Abstract: Described herein is an arm supporting exoskeleton, comprising an arm link mechanism. The arm link mechanism comprises a proximal link, a distal link, an arm coupler, and a variable force generator. The distal link is rotatable relative to the proximal link. The arm coupler is adapted to couple an upper arm of a person to the distal link. The variable force generator comprises a first spring and a second spring, configured to create a torque between the proximal link and the distal link. In the first force mode, the variable force generator exhibits a first stiffness rate defined by the first spring that supports the upper arm of the person against gravity forces and. In the second force mode, the variable force generator exhibits a second stiffness rate defined by the first spring and the second spring that supports the upper arm of the person against the gravity forces.

    Apparatus for human arm supporting exoskeleton

    公开(公告)号:US10369690B2

    公开(公告)日:2019-08-06

    申请号:US16157417

    申请日:2018-10-11

    Abstract: An arm supporting exoskeleton comprises a shoulder base coupled to an arm link mechanism. The arm link mechanism comprises a proximal link and a distal link configured to rotate relative to each other about a rotating joint; at least one arm-coupler adapted to couple a user's arm to the distal link; a tensile force generator coupled to the proximal link and the distal link, and providing a torque to flex the distal link relative to the proximal link; and a protrusion located substantially at the rotating joint. When the distal link extends past a toggle angle, the protrusion constrains the tensile force generator, and the torque provided by the tensile force generator remains substantially small. When the protrusion does not constrain the tensile force generator, the torque tends to flex the distal link relative to the proximal link, thereby reducing human shoulder forces and torques required to raise the arm.

    Trunk supporting exoskeleton and method of use

    公开(公告)号:US10357392B2

    公开(公告)日:2019-07-23

    申请号:US14704901

    申请日:2015-05-05

    Abstract: An exoskeleton (100) includes two torque generators (116, 118), two thigh links (104,106), and a supporting trunk (112) rotatably coupled to the thigh links (104, 106). When a wearer bends forward in the sagittal plane such that the supporting trunk (112) extends beyond a predetermined angle A with respect to vertical, at least one of the torque generators (116, 118) imposes a resisting torque between the supporting trunk (112) and a corresponding thigh link (104, 106), thus imposing a force onto a wearer's trunk and thighs to aid in supporting the wearer in a bent position. The exoskeleton (100) may include an active or passive means (116, 134) for actuating the torque generators (116, 118). When the supporting trunk (112) does not extend beyond the predetermined angle A, the torque generators (116, 118) do not impose resisting torques between the supporting trunk (112) and the thigh links (104, 106) during the entire range of motion of the thigh links (104, 106), thus enabling a wearer to walk, run, and sit without constraint while in a substantially upright position.

Patent Agency Ranking