Abstract:
A method and apparatus for gas-phase reduction/oxidation is disclosed. The apparatus includes a reactor including at least one reactor tube or containment vessel with active redox material within the reactor tube or containment vessel, a first reactant gas or vacuum for reducing the active redox material, and a second reactant gas for oxidizing the active redox material. The method may be run under substantially isothermal conditions and/or energy supplied to the apparatus may include solar energy, which may be concentrated.
Abstract:
A method for forming an oxygen reduction reaction (ORR) catalyst (200, 900) may include providing a carbon (210, 910) supported platinum nanoparticle (220, 920) substrate (Pt/C) (110) and applying a tungsten nitride (WN) film (940) onto the surface of the Pt/C substrate (210, 220, 910, 920) using atomic layer deposition (ALD) (120). The Pt/C substrate (210, 220, 910, 920) with the WN film (940) may then be oxidized at a low temperature (130) and annealed at a high temperature in order to reduce WN to metallic tungsten (W) (140). The metallic W forms a blocking layer (230, 930) over coarse Pt nanoparticles (220, 920) and improves the activity and the durability of the Pt/C catalyst (900, 200) when used in fuel cells or related applications.
Abstract:
Disclosed herein is a ceramic particle comprising a core substrate chosen from yttria-stabilized zirconia, partially stabilized zirconia, zirconium oxide, aluminum nitride, silicon nitride, silicon carbide, and cerium oxide, and a conformal coating of a sintering aid film having a thickness of less than three nanometers and covering the core substrate, and methods for producing the ceramic particle.
Abstract:
Embodiments of the present disclosure provide novel compositions, methods of use and methods for single composition, multi-dose, thermostable vaccine formulations. In certain embodiments, the present disclosure provides compositions and methods for dehydrating immunogenic agents in the presence of glass-forming agents, and coating the particles formed by the glass-forming agents. In other embodiments, the present disclosure provides for generating compositions for administering an immunogenic composition to a subject multiple times using a single immunogenic composition capable of time-release administration. In other embodiments, single-dose immunogenic agent-containing particles can be directed to two or more pathogens. In other embodiments, incompatible immunogenic agents against two or more different pathogens of immunogenic agent-containing particles disclosed herein can be mixed together and coated for timed-release administration to produce single-administration formulations capable of eliciting an immune response to the two or more pathogens in a subject.
Abstract:
Embodiments of the present disclosure provide novel compositions, methods of use and methods for single composition, multi-dose, thermostable vaccine formulations. In certain embodiments, the present disclosure provides compositions and methods for dehydrating immunogenic agents in the presence of glass-forming agents, and coating the particles formed by the glass-forming agents. In other embodiments, the present disclosure provides for generating compositions for administering an immunogenic composition to a subject multiple times using a single immunogenic composition capable of time-release administration. In other embodiments, single-dose immunogenic agent-containing particles can be directed to two or more pathogens. In other embodiments, incompatible immunogenic agents against two or more different pathogens of immunogenic agent-containing particles disclosed herein can be mixed together and coated for timed-release administration to produce single-administration formulations capable of eliciting an immune response to the two or more pathogens in a subject.
Abstract:
A method and apparatus for gas-phase reduction/oxidation is disclosed. The apparatus includes a reactor including at least one reactor tube or containment vessel with active redox material within the reactor tube or containment vessel, a first reactant gas or vacuum for reducing the active redox material, and a second reactant gas for oxidizing the active redox material. The method may be run under substantially isothermal conditions and/or energy supplied to the apparatus may include solar energy, which may be concentrated.
Abstract:
A improved solar biochar reactor, system including the reactor, and methods of forming and using the reactors and systems are disclosed. The methods and system as described herein provide sufficient solar energy to a biochar reactor to convert animal waste or other biomass to biochar in a relatively cost-effective manner.