摘要:
A non-aqueous electrolyte secondary battery has an electrode and an electrolyte layer. The electrode includes a collector having a lot of fine pores on its surface, and a membrane layer made of an electrode active material provided along the surface shape of the fine pores of the collector. By this structure, the battery can manifest an excellent performance even in charging and discharging at high speed without using a binder and conductive material.
摘要:
A flat acoustic resin insulator (A) is one-shot molded, with a sound absorbing structure composed of a rigid-connected combination of a plurality of independent sound absorbing cells each constituted with a mold cavity (C) defined by a rigid lateral wall (E), a rigid bottom wall (F), and a vibratory top surface layer (H), and an opening (B) formed through the surface layer (H) for acoustic external communication of the mold cavity (C). The opening (B) cooperates with the mold cavity (C) to serve for resonance absorption of sounds, and the surface layer (H) covering the mold cavity (C) serves for film-vibratory absorption of sounds. Characteristic curves of the resonance sound-absorption and the film-vibratory sound-absorption have their peaks at different audible frequencies and their slopes overlapping therebetween, with a superimposed sound-absorbing effect over a wide frequency range.
摘要:
The invention relates to a fibrous acoustical material for reducing noise transmission. This fibrous acoustical material comprises first, second and third fibers. The first fiber has a first fineness of 1.5-20 deniers and a first softening point. The second fiber has a second fineness of 1.5-15 deniers. At least a surface of the second fiber has a second softening point which is at least 30.degree. C. lower than the first softening point. The third fiber has a third fineness of 1.5-15 deniers. At least a surface of the third fiber has a third softening point which is lower than the second softening point and at least 80.degree. C. lower than the first softening point. The first, second and third fibers are respectively in amounts of 10-90 wt %, 5-85 wt % and 5-85 wt %, based on a total weight of the first, second and third fibers. The first, second and third fibers are each within a range of from 20 to 100 mm in average fiber length. The fibrous acoustical material has an average apparent density of from 0.01 to 0.8 g/cm.sup.3. The fibrous acoustical material is light in weight and superior in acoustical capability, heat resistance and resistance to compressive force.
摘要:
A noise insulating structure for a passenger compartment of an automotive vehicle. The noise insulating structure comprises first, second and third sound absorbing materials which are disposed respectively to a head lining, a dash insulator and a floor carpet disposed in the passenger compartment. The first sound absorbing material is capable of absorbing sound within a first frequency range of from 0.8 to 10 KHz. The second sound absorbing material is capable of absorbing sound within a second frequency range of from 0.3 to 2 KHz. The third sound absorbing material is capable of absorbing sound within a third frequency range of from 0.1 to 1 KHz. Each sound absorbing material is formed of a unshaped polyester fiber mixture which is prepared by mixing polyester (main) fibers and binder fibers for bonding the polyester fibers to each other.
摘要:
A sound absorption structure which is mainly applied to an intake system of an automotive engine for suppressing noise level. The sound absorption structure comprises a base duct portion, and an extended duct portion in which a sound absorption material is installed, and a Helmholtz resonator. The extended duct portion is formed such that a representative diameter of the extended duct portion is greater than that of the base duct portion while connected to the base duct portion. The Helmholtz resonator is set to be resonant at a frequency corresponding to a frequency range of a resonance generated by the installation of the extended duct portion including the sound absorption material. The Helmholtz resonator is integrally formed with the extended duct portion. Therefore, the sound absorption structure ensures an excellent sound absorption ability in the whole frequency range.