Abstract:
An apparatus includes: a drying unit to dry a printing medium on which an image was printed using an inkjet head; a humidification unit to humidify the printing medium that was dried by the drying unit so that the moisture content of the printing medium becomes the equilibrium state in the ambient environment; a colorimetric unit to perform colorimetry on the printing medium that was humidified by the humidification unit; and a calibration unit to calibrate printing properties on the basis of the result of colorimetry by the colorimetric unit.
Abstract:
An inverter device includes a converter circuit that rectifies a first alternating current output from a power supply to generate a rectified current, a capacitor that stores therein the rectified current and outputs a direct current based on the rectified current, and an inverter circuit that converts the direct current into a second alternating current for driving a load. Moreover, a voltage control unit generates and outputs, during a period when any one of an instantaneous power cut and an instantaneous voltage drop occurs in the power supply, a first current command based on a voltage of the capacitor and a second current command; and a current control unit generates and outputs, based on the first current command, the second current command for controlling the inverter circuit to output the second alternating current.
Abstract:
An electric motor car controller includes a voltage detector for detecting the voltage across a filter capacitor, an energy amount calculator for calculating the amount of energy of the filter capacitor from the output of the voltage detector, a frequency band component detector for extracting a given frequency band component included in the amount of energy, a frequency band component coefficient unit for multiplying the frequency band component by a coefficient and outputting a q-axis current command correcting value, and a q-axis current command correcting value adder for adding a q-axis current command correcting value to the q-axis current command value to correct the q-axis current command value.
Abstract:
A power conversion apparatus includes AC power supplies, If an abnormality occurs in any one of the AC power supplies and loads that are respectively connected to two capacitors are not balanced, voltages of the two capacitors are balanced. When an abnormality occurs in a first or second AC power supply, a first reactor is connected to a second reactor in series, a battery supplies energy to the two capacitors, and a current flowing to the first reactor is controlled by a first switch. In this manner, a voltage between the two capacitors is controlled.
Abstract:
The present invention provides a power inverting apparatus capable of coping with an abrupt change in phase of input voltage within a certain range and operating in a stable manner continuously. According to a first aspect of the present invention, a power inverting apparatus comprises a converter unit for changing ac voltage supplied by an ac voltage source into dc voltage, an inverter unit for changing dc voltage supplied by converter unit into ac voltage, and an input voltage control unit that when the polarity of ac voltage supplied by the ac voltage source inconsistent with the one of ac voltage supplied by the inverter unit, cuts off ac voltage to be supplied to the converter unit.
Abstract:
When mispicking occurs, a weft yarn continuous with a mispicked weft yarn is inserted into the shed of warp yarns in a loop by the jetting of a main picking nozzle and auxiliary picking nozzles. A weft yarn retaining member is positioned in the loop of the weft yarn and the mispicked weft yarn is pulled to be removed from the picking side by way of the weft yarn. Given auxiliary picking nozzles stop jetting when the weft yarn is inserted in a loop so that the tip end of the loop of the inserted weft yarn is limited in the extent to which it moves in the picking direction, and thus does not extend substantially beyond the arriving side of the shed of warp yarns, so as to prevent entanglement thereof with various other members.
Abstract:
In a line-head type inkjet printing apparatus that ejects a plurality of types of inks, an inkjet printing apparatus is provided in which the change of its ejection properties different depending on the type of ink is prevented from occurring. The line-head type printing apparatus includes an acquisition unit that counts the ejection number of liquid from each of print heads in each of a plurality of print heads. Furthermore, the printing apparatus compares the ejection number of liquid from each of the print heads counted by the acquisition unit with a threshold value set for each of the print heads. The printing apparatus includes a change unit that can move a holder in the main scanning direction when the counted ejection number of liquid exceeds the threshold value set for the print head.
Abstract:
A power converting apparatus includes a main inverter having a high-voltage DC power supply that operates at a low frequency employing SiC MOSFETs having a high withstand voltage exceeding 600 V and a sub-inverter having a low-voltage capacitor that operates through high-frequency PWM employing Si MOSFETs having a low withstand voltage. With AC sides of the main inverter and the sub-inverter connected in series, the power converting apparatus outputs AC power having a prescribed voltage waveform by adding voltages individually generated by the main inverter and the sub-inverter. Specifically, the SiC MOSFETs are used only in the main inverter of which devices are required to have a high withstand voltage and the Si MOSFETs are used in the sub-inverter of which devices may have a relatively low withstand voltage, whereby conduction loss is reduced with an inexpensive circuit configuration.
Abstract:
A power conversion device includes an inverter that drives a motor; a fin that cools down the inverter; a first core including a through hole that allows passage of a positive side conductor that connects a power supply system and the inverter and a negative side conductor that grounds the inverter; a ground conductor that grounds the fin; a ground conductor that grounds a motor yoke via a capacitor; and a ground conductor including one end that is connected to the negative side conductor or the ground conductor and the other end that is grounded.
Abstract:
The object is to effectively reduce the resonant current flowing inside a converter unit and an inverter unit in a power conversion apparatus for an electric vehicle. The power conversion apparatus includes a converter unit that converts an alternating-current power into a direct-current power, an inverter unit that converts the direct-current power into an intended alternating-current power and supplies the intended alternating-current power to an electric motor that drives an electric vehicle, a housing that accommodates the converter unit and the inverter unit and a part of which is connected to ground, and a magnetic core that is disposed inside the housing and that suppresses the resonant current flowing between the converter unit and the inverter unit.