Abstract:
In a line-head type inkjet printing apparatus that ejects a plurality of types of inks, an inkjet printing apparatus is provided in which the change of its ejection properties different depending on the type of ink is prevented from occurring. The line-head type printing apparatus includes an acquisition unit that counts the ejection number of liquid from each of print heads in each of a plurality of print heads. Furthermore, the printing apparatus compares the ejection number of liquid from each of the print heads counted by the acquisition unit with a threshold value set for each of the print heads. The printing apparatus includes a change unit that can move a holder in the main scanning direction when the counted ejection number of liquid exceeds the threshold value set for the print head.
Abstract:
A power converting apparatus includes a main inverter having a high-voltage DC power supply that operates at a low frequency employing SiC MOSFETs having a high withstand voltage exceeding 600 V and a sub-inverter having a low-voltage capacitor that operates through high-frequency PWM employing Si MOSFETs having a low withstand voltage. With AC sides of the main inverter and the sub-inverter connected in series, the power converting apparatus outputs AC power having a prescribed voltage waveform by adding voltages individually generated by the main inverter and the sub-inverter. Specifically, the SiC MOSFETs are used only in the main inverter of which devices are required to have a high withstand voltage and the Si MOSFETs are used in the sub-inverter of which devices may have a relatively low withstand voltage, whereby conduction loss is reduced with an inexpensive circuit configuration.
Abstract:
A power conversion device includes an inverter that drives a motor; a fin that cools down the inverter; a first core including a through hole that allows passage of a positive side conductor that connects a power supply system and the inverter and a negative side conductor that grounds the inverter; a ground conductor that grounds the fin; a ground conductor that grounds a motor yoke via a capacitor; and a ground conductor including one end that is connected to the negative side conductor or the ground conductor and the other end that is grounded.
Abstract:
Three-phase windings 11-13 and 21-23 of a first common-mode transformer 1 and a second common-mode transformer 2 are connected in series through connecting lines 8r-8t, respectively. The windings 11-13 are connected to an unillustrated AC power supply by connecting lines 91r-91t. The windings 21-23 are connected to a three-phase motor by connecting lines 93r-93t and through a converter and an inverter which are unillustrated. A winding 14 for common-mode voltage detection detects high-frequency leakage currents flowing through the connecting lines 91r-91t as a common-mode voltage V1, and an output voltage V2 obtained by voltage amplification by a voltage amplifier 3 is applied to a winding 24 for common-mode voltage application in such a manner that the output voltage V2 works in generally the same direction as the common-mode voltage V1, thereby canceling out the high-frequency leakage currents through the windings 21-23. Since a voltage amplification method is used, it is possible to reduce the high-frequency leakage currents with a simpler configuration as compared to a conventional current amplification method.
Abstract:
First windings of a first common mode transformer and second windings of a second common mode transformer are connected in series via connection lines. The windings are connected to an AC power supply via connection lines. The first windings are connected to a three-phase motor via connection lines, a converter, and an inverter. High-frequency leakage currents flowing in the connection lines are detected as a common mode voltage by a winding for common mode voltage detection. An output voltage is inputted via a filter to a voltage amplifier unit that amplifies the output voltage, and the amplified voltage is applied to a winding via a capacitor in substantially a same direction as a direction of the common mode voltage. As a result, leakage currents are reduced by induced voltages on the windings.
Abstract:
An electric motor driving apparatus having a failure detection circuit includes: a bridge circuit driving an electric motor; a PWM control circuit generating voltage instruction for driving the electric motor; a PWM signal generation circuit generating a PWM signal; a DC current detection circuit detecting DC current of the bridge circuit; a phase current calculation circuit calculating output phase current of the bridge circuit, based on the DC current and PWM signal; and a failure detection circuit detecting failure of the DC current detection circuit. The failure detection circuit determines failure of the DC current detection circuit from the DC current detected values in a zero voltage period in which the high-potential-side arms of the bridge circuit are all ON and in a zero voltage period in which the low-potential-side arms are all ON.
Abstract:
The object is to effectively reduce the resonant current flowing inside a converter unit and an inverter unit in a power conversion apparatus for an electric vehicle. The power conversion apparatus includes a converter unit that converts an alternating-current power into a direct-current power, an inverter unit that converts the direct-current power into an intended alternating-current power and supplies the intended alternating-current power to an electric motor that drives an electric vehicle, a housing that accommodates the converter unit and the inverter unit and a part of which is connected to ground, and a magnetic core that is disposed inside the housing and that suppresses the resonant current flowing between the converter unit and the inverter unit.
Abstract:
A leg includes: two semiconductor device groups connected in series and a division current is generated in a current which flows in the semiconductor device group between elements in the semiconductor device groups, a current sensor which detects a current which flows in the semiconductor device group, a voltage command generation unit which calculates a voltage command value to be outputted, a voltage drop calculating unit which calculates a voltage drop of the semiconductor device group by using a current value which is detected by the current sensor and voltage drop characteristics including a division characteristic of the semiconductor device group, and a switching control unit which corrects a voltage command value which is generated by the voltage command generation unit by using the voltage drop which is calculated so as to control ON/OFF of the switching element.
Abstract:
A recording apparatus includes a recording head, a roller configured to convey a recording medium, an acquisition unit configured to acquire information about a conveyance amount for conveying the recording medium per a predetermined rotation amount of the roller, a recording timing generation unit configured to generate a plurality of timing signals for performing recording for one raster line according to a rotation of the roller during one rotation thereof, and a drive signal generation unit configured to generate a drive reference signal for performing the recording for the one raster line on the recording medium at a predetermined interval based on the conveyance amount information and the timing signal.
Abstract:
A printing apparatus includes a plurality of inkjet print heads to which humidified air is supplied to retain the humidity in the print heads. Ink colors for the plurality of heads are arranged in a sequence corresponding to ink characteristics. The plurality of print heads are arranged in a sequence such that a print head configured to eject ink characterized by having a larger amount of volatile components evaporated within a predetermined time is located in a more upstream area.