Abstract:
An air cleaner device for filtering intake air including a housing defining a chamber, a filter element disposed within the chamber, and a duct element having a passageway in fluid communication with the chamber. Further, the duct element extends along and downwardly from about a portion of the housing and further includes an inlet for drawing intake air into the chamber. The air cleaner having a base member in fluid communication with the chamber and an outlet, where the air drawn into the chamber is filtered by first and second filtering operations to obtain filtered air, with the first and the second filtering operations accomplished at least in part due to a cyclonic motion of the air and passage of the air through the filter element, respectively; and where the filtered air from the chamber of the housing is released through the outlet in the base member.
Abstract:
In at least some embodiments, the present invention relates to an air cleaner having a housing portion, and a low profile rain cover having an opening on an underside of the cover to allow unfiltered air to enter into the air cleaner. Also, in at least some embodiments, the present invention relates to an air cleaner including a housing and an additional component by which the air cleaner is capable of being directly coupled to a carburetor inlet. In some such embodiments, one or more protrusions can be provided within a channel formed by the housing/additional component to influence air flow. Further, in at least some embodiments, the present invention relates to an air cleaner having a shaped wall formed on a housing portion, where the shaped wall includes both an interior surface and an exterior surface by which air flowing within the air cleaner is imparted with helical motion.
Abstract:
A system and method of controlling/adjusting purge flow rate in an internal combustion engine is disclosed. The system includes an air intake assembly, a fuel tank assembly and an evaporative emissions control device such as a carbon canister in operational association with each other. Fuel vapors from the fuel tank assembly flow into the evaporative emissions control device for adsorption. The adsorbed fuel vapors from the evaporative emissions control device are recovered, at least in part due to pressure differentials, and actively purged into the internal combustion engine. The purge flow rate from the evaporative emissions control device is controlled/adjusted by a flow control device, the flow control device that is at least indirectly connected to the evaporative emissions control device and the air intake assembly. In one aspect, the flow control device can comprise an orifice device, such as, a connector device having at least one orifice for regulating purge flow rate. In another aspect, the flow control device can comprise a filter device for cleaning the intake and/or purged air in addition to regulating the purge flow rate.
Abstract:
In at least some embodiments, the present invention relates to an air cleaner having a housing portion, and a low profile rain cover having an opening on an underside of the cover to allow unfiltered air to enter into the air cleaner. Also, in at least some embodiments, the present invention relates to an air cleaner including a housing and an additional component by which the air cleaner is capable of being directly coupled to a carburetor inlet. In some such embodiments, one or more protrusions can be provided within a channel formed by the housing/additional component to influence air flow. Further, in at least some embodiments, the present invention relates to an air cleaner having a shaped wall formed on a housing portion, where the shaped wall includes both an interior surface and an exterior surface by which air flowing within the air cleaner is imparted with helical motion.
Abstract:
In at least some embodiments, the present invention relates to an air cleaner having a housing portion, and a low profile rain cover having an opening on an underside of the cover to allow unfiltered air to enter into the air cleaner. Also, in at least some embodiments, the present invention relates to an air cleaner including a housing and an additional component by which the air cleaner is capable of being directly coupled to a carburetor inlet. In some such embodiments, one or more protrusions can be provided within a channel formed by the housing/additional component to influence air flow. Further, in at least some embodiments, the present invention relates to an air cleaner having a shaped wall formed on a housing portion, where the shaped wall includes both an interior surface and an exterior surface by which air flowing within the air cleaner is imparted with helical motion.
Abstract:
An air filter and corresponding filter element for use in an internal combustion engine are disclosed. The filter element has a seal bead made of an elastomeric material that forms the frame of the filter element. A pleat block, made of a filter media, is molded into the seal bead in a first area of the filter element and a baffle is located in a second area of the filter element to protect the pleat block from wetting. A channel is formed in one side of the seal bead which allows the filter element to be retained during assembly without the use of fasteners and a surface is formed opposite the seal bead that in conjunction with the channel seals the filter element within the air filter when the air filter is fully assembled. The air filter has an intake silencing chamber that is located to receive outside air before it is provided to the pleat block and a sealed flow path is created from the intake silencing chamber to the pleat block by a third area of the filter element.