Abstract:
There is disclosed a speech processing device in which prediction taps for finding prediction values of the speech of high sound quality are extracted from the synthesized sound obtained on affording linear prediction coefficients and residual signals, generated from a preset code, to a speech synthesis filter, speech of high sound quality being higher in sound quality than the synthesized sound, and in which the prediction taps are used along with preset tap coefficients to perform preset predictive calculations to find the prediction values of the speech of high sound quality. The speech of high sound quality is higher in sound quality than the synthesized sound. The device includes a prediction tap extracting unit (45) for extracting, from the synthesized sound, the prediction taps used for predicting the speech of high sound quality, as target speech, the prediction values of which are to be found, and a class tap extraction unit (46) for extracting class taps, used for classifying the target speech to one of a plurality of classes, from the above code. The device also includes a classification unit (47) for finding the class of the target speech based on the class taps, acquisition unit for acquiring the tap coefficients associated with the class of the target speech from among the tap coefficients as found on learning from class to class, and a prediction unit (49) for finding the prediction values of the target speech using the prediction taps and the tap coefficients associated with the class of the target speech.
Abstract:
A reception device configured to receive a signal of a transmitted bit string transmitted from a transmission device which transmits a bit string includes: a receiving unit arranged to receive a signal from the transmission device and output a received bit string corresponding to the transmitted bit string; a storing unit arranged to store an error rate table wherein said received bit string is correlated with an error rate of post-data which is data of one bit or greater received following the received bit string being in error; and an error correcting unit arranged to perform error correcting of the post-data of the received bit string.
Abstract:
An image processing device, method, recording medium, and program where the device includes an image data continuity detector configured to detect continuity of image data made up of a plurality of pixels acquired by real world light signals being cast upon a plurality of detecting elements, and a real world estimating unit configured to estimate real world light signals by approximating image data with discontinuous functions.
Abstract:
An image processing apparatus includes the following elements. A broad-range feature extraction unit extracts broad-range features from pixels located in a predetermined area in relation to a subject pixel of a first image. A broad-range degree-of-artificiality calculator calculates, in a multidimensional space represented by the broad-range features, the broad-range degree of artificiality from the positional relationship of the broad-range features to a statistical distribution range of an artificial image of the first image. A narrow-range feature extraction unit extracts narrow-range features from pixels located in the predetermined area in relation to the subject pixel of the first image. A narrow-range degree-of-artificiality calculator calculates, in a multidimensional space represented by the narrow-range features, the narrow-range degree of artificiality from the positional relationship of the narrow-range features to a statistical distribution range of the artificial image. A degree-of-artificiality calculator calculates the degree of artificiality of the subject pixel.
Abstract:
An imaging apparatus includes: an imaging section configured to approximate one of color matching functions representing sensitivity of the human eye to color by a spectral sensitivity that is obtained as a difference in output between, from among mutually adjacent photoelectric conversion elements, the photoelectric conversion elements arranged at predetermined positions, the imaging section having the photoelectric conversion elements arranged at the predetermined positions; and a signal processing section configured to apply to an output of the imaging section signal processing for converting an output of a photoelectric conversion element into a signal of a color image.
Abstract:
A display apparatus that displays an image includes: an image converting unit converting a photographed image signal, which is an image signal from a photographing unit that photographs an object, into a high-quality image signal of an image higher in quality than an image corresponding to the photographed image signal according to an arithmetic operation between the photographed image signal and a tap coefficient obtained by learning performed in advance; and a display control unit causing a display to display the image corresponding to the high-quality image signal in a display format determined by learning performed using an image higher in quality than the image corresponding to the high-quality image signal.
Abstract:
A semiconductor device having a plurality of data recording areas is provided. The semiconductor device includes an input port that receives basic information; an additive data recording area on which additive data serving as information additive to the basic information is recorded; a processing unit which encodes the basic information based on the basic information and the additive data; and a calculation data recording area on which calculation data encoded by the processing unit is recorded such that the calculation data encoded by the processing unit is at a quality level higher than that of the basic information. The processing unit controls the additive data recording area in response to classifying the received basic information on the basis of a class classification adaptive processes.
Abstract:
In a communication system for serving data corresponding to a request from the user and charging the user for the data served to the user, when the user designates a result of a desired one of a plurality of different operations, a usage management unit selects a one, corresponding to the user's designation, of a plurality of processors which effect operations corresponding to a plurality of different algorithms, respectively. When the processor corresponding to the designation is selected, an algorithm processor makes an operation corresponding to the designation. A management center charges the user for the use of the algorithm.
Abstract:
A class configuration generation unit generates (n−1) number of class configurations each of which is comprised of i number of the already selected features plus a feature selected from the remaining (n−i) number of the features (both of n and i are integers). A class configuration selection unit selects an optimal class configuration from the (n−i) number of the class configurations using an arbitrary evaluation value. The features used in the class configuration selected by the selection unit are used as the already selected features in the generation unit. The operations by the generation unit and the selection unit are repeated with values of i sequentially varying from 0 to r−1, thereby generating a class configuration comprised of r number of the features.
Abstract:
An information processing apparatus performs a monitor processing based on sensor data. A first sensor obtains sensor data of a first format, the first format being video. A second sensor obtains sensor data of a second format, the second format being different from the first format. Surveilled features of an object are extracted from the sensor data obtained and compared to determination parameters in order to determine whether a surveillance event has occurred. When a surveillance event is determined to have occurred, message data reports the surveillance event to a further information processing apparatus. A decision signal is received from the further information processing apparatus, and a switch individually turns ON or OFF each of the first and second sensors according to the decision signal based on an instruction transmitted from the further information processing apparatus.