摘要:
Semiconductor methods and device structures for suppressing latch-up in bulk CMOS devices. The method comprises forming a trench in the semiconductor material of the substrate with first sidewalls disposed between a pair of doped wells, also defined in the semiconductor material of the substrate. The method further comprises forming an etch mask in the trench to partially mask the base of the trench, followed by removing the semiconductor material of the substrate exposed across the partially masked base to define narrowed second sidewalls that deepen the trench. The deepened trench is filled with a dielectric material to define a trench isolation region for devices built in the doped wells. The dielectric material filling the deepened extension of the trench enhances latch-up suppression.
摘要:
A sidewall image transfer process for forming sub-lithographic structures employs a layer of sacrificial polymer containing silicon that is deposited over a gate conductor layer and covered by a cover layer. The sacrificial polymer layer is patterned with conventional resist and etched to form a sacrificial mandrel. The edges of the mandrel are oxidized or nitrided in a plasma at low temperature, after which the polymer and the cover layer are stripped, leaving sublithographic sidewalls. The sidewalls are used as hardmasks to etch sublithographic gate structures in the gate conductor layer.
摘要:
Methods for fabricating a semiconductor device include forming a first layer on an underlying layer, forming a hardmask on the first layer, and patterning holes through the hardmask and first layer. An overhang is formed extending over sides of the holes. A conformal layer is deposited over the overhang and in the holes until the conformal layer closes off the holes to form a void/seam in each hole. The void/seam in each hole is exposed by etching back a top surface. The void/seam in each hole is extended to the underlying layer.
摘要:
A Y-shaped carbon nanotube atomic force microscope probe tip and methods comprise a shaft portion; a pair of angled arms extending from a same end of the shaft portion, wherein the shaft portion and the pair of angled arms comprise a chemically modified carbon nanotube, and wherein the chemically modified carbon nanotube is modified with any of an amine, carboxyl, fluorine, and metallic component. Preferably, each of the pair of angled arms comprises a length of at least 200 nm and a diameter between 10 and 200 nm. Moreover, the chemically modified carbon nanotube is preferably adapted to allow differentiation between substrate materials to be probed. Additionally, the chemically modified carbon nanotube is preferably adapted to allow fluorine gas to flow through the chemically modified carbon nanotube onto a substrate to be characterized. Furthermore, the chemically modified carbon nanotube is preferably adapted to chemically react with a substrate surface to be characterized.
摘要:
An optical sensor and method for forming the same. The optical sensor structure includes (a) a semiconductor substrate, (b) first, second, third, fourth, fifth, and sixth electrodes and (c) first, second, and third semiconducting regions. The first and fourth electrodes are at a first depth. The second and fifth electrodes are at a second depth. The third and sixth electrodes are at a third depth. The first depth is greater than the second depth, and the second depth is greater than the third depth. The first, second, and third semiconducting regions are disposed between and in contact with the first and fourth electrodes, second and fifth electrodes, and third and sixth electrodes, respectively. The first, second, and third semiconducting regions are in contact with each other.
摘要:
A fin field effect transistor (FinFET) gate comprises a semiconductor wafer; a gate dielectric layer over the semiconductor wafer; a conductive material on the gate dielectric layer; an activated carbon nanotube on a surface of the conductive material; and a plated metal layer on the activated carbon nanotube. Preferably, the carbon nanotube is on a sidewall of the conductive material. The conductive material comprises a first metal layer over the gate dielectric layer, wherein the first metal layer acts as a catalyst for growing the carbon nanotube, wherein the first metal layer is preferably in a range of 1-10 nm in thickness. The semiconductor wafer may comprise a silicon on insulator wafer. The FinFET gate may further comprise a second metal layer disposed between the first metal layer and the gate dielectric layer.
摘要:
A semiconductor on insulator substrate and a method of fabricating the substrate. The substrate including: a first crystalline semiconductor layer and a second crystalline semiconductor layer; and an insulating layer bonding a bottom surface of the first crystalline semiconductor layer to a top surface of the second crystalline semiconductor layer, a first crystal direction of the first crystalline semiconductor layer aligned relative to a second crystal direction of the second crystalline semiconductor layer, the first crystal direction different from the second crystal direction.
摘要:
A borderless contact structure and method of fabricating the structure, the method including: (a) providing a substrate; (b) forming a polysilicon line on the substrate, the polysilicon line having sidewalls; (c) forming an insulating sidewall layer on the sidewalls of the polysilicon line; (d) removing a portion of the polysilicon line and a corresponding portion of the insulating sidewall layer in a contact region of the polysilicon line; and (e) forming a silicide layer on the sidewall of the polysilicon line in the contact region. Also an SRAM cell using the borderless contact structure and a method of fabricating the SRAM cell.
摘要:
A memory gain cell for a memory circuit, a memory circuit formed from multiple memory gain cells, and methods of fabricating such memory gain cells and memory circuits. The memory gain cell includes a storage device capable of holding a stored electrical charge, a write device, and a read device. The read device includes a fin of semiconducting material, electrically-isolated first and second gate electrodes flanking the fin, and a source and drain formed in the fin adjacent to the first and the second gate electrodes. The first gate electrode is electrically coupled with the storage device. The first and second gate electrodes are operative for gating a region of the fin defined between the source and the drain to thereby regulate a current flowing from the source to the drain. When gated, the magnitude of the current is dependent upon the electrical charge stored by the storage device.
摘要:
Methods for fabricating alternating phase shift masks or reticles used in semiconductor optical lithography systems. The methods generally include forming a layer of phase shift mask material on a handle substrate and patterning the layer to define recessed phase shift windows. The patterned layer is transferred from the handle wafer to a mask blank. The depth of the phase shift windows is determined by the thickness of the layer of phase shift mask material and is independent of the patterning process. In particular, the depth of the phase shift windows is not dependent upon the etch rate uniformity of an etch process across a surface of a mask blank.