摘要:
A method of fabricating a nitride read only memory. A trapping dielectric sandwiched structure, including an insulation layer, a charge trap layer and an insulation layer, is formed on a substrate. An opening with indented sidewalls is formed in the insulation layer. A thermal oxide layer is formed to fill the opening, such that the indented sidewalls are completely sealed. The charge trap layer is thus sealed by the insulation layers and the thermal oxide layer to avoid the direct contact between the control gate and the charge trap layer, so as to prevent the data loss.
摘要:
The presents invention provides an initialization method of a P-type silicon nitride read only memory. A P-type silicon nitride read only memory is provided. An ultra-violet light is uniformly radiated onto the P-type silicon nitride read only memory. Electron traps are thus evenly distributed in a silicon nitride layer of the P-type silicon nitride read only memory. The P-type silicon nitride read only memory is thus uniformly programmed to a low threshold voltage (Low|Vt|) to achieve the device initialization effect.
摘要:
A method of simultaneously forming a dual damascence runner and a metal-insulator-metal (MIM) capacitor on a semiconductor wafer. The semiconductor wafer has a first dielectric layer, which has at least a first conductive layer and at least a bottom electrode of the MIM capacitor. The surfaces of the first conductive layer and the bottom electrode of the MIM capacitor are covered with a barrier layer. A second dielectric layer, a stop layer and a third dielectric layer are formed on the surface of the barrier layer and form a sandwiched structure. A first photoresist layer is formed and the third dielectric layer is anisotropically etched down to the stop layer, thus forming a trench and an opening in the third dielectric layer above the conductive layer and the bottom electrode of the MIM capacitor. A second photoresist layer is formed and the stop layer and the second dielectric layer are etched at a bottom of the opening down to the surface of the barrier layer so as to form an opening of the top electrode. A third photoresist layer is formed and the stop layer, the second dielectric layer and the barrier layer are etched through the contact opening down to the surface of the first conductive layer so as to form a contact hole.
摘要:
The invention provides a method for forming a capacitor in a mixed mode circuit device through ion implantation. The method includes forming a polysilicon layer over a substrate, which substrate has isolation region formed thereon. An ion implantation process is performed to implant oxygen ions into the polysilicon layer. An annealing process is performed to trigger an reaction between the oxygen ions and the silicon ions. As a result, a silicon oxide layer is formed within the polysilicon layer. The silicon layer and the polysilicon layer are patterned, where the top portion of the polysilicon layer above the silicon oxide layer serves as an upper electrode of a capacitor. The polysilicon layer below the silicon oxide layer serves as the lower electrode.
摘要:
Roughly described, a device having twin bit floating gate memory cells is fabricated by first providing a substrate having formed thereon, within a memory area, a composite charge storage film and a protective liner layer over the composite film. The memory area further includes oxide features over buried diffusion regions in the substrate, and polysilicon spacers over the composite film against the sidewalls of the oxide features. The method further involves etching an isolation trench through the composite film laterally between two of the oxide features, using the polysilicon spacers as a mask, and forming an insulator in the trench. A gate conductor is then formed overlying both the composite film and the filled isolation trench between the two oxide features.
摘要:
Roughly described, a device having twin bit floating gate memory cells is fabricated by first providing a substrate having formed thereon, within a memory area, a composite charge storage film and a protective liner layer over the composite film. The memory area further includes oxide features over buried diffusion regions in the substrate, and polysilicon spacers over the composite film against the sidewalls of the oxide features. The method further involves etching an isolation trench through the composite film laterally between two of the oxide features, using the polysilicon spacers as a mask, and forming an insulator in the trench. A gate conductor is then formed overlying both the composite film and the filled isolation trench between the two oxide features.