摘要:
A memory cell device, of the type that includes a memory material switchable between electrical property states by application of energy, includes first and second electrodes, a plug of memory material (such as phase change material) which is in electrical contact with the second electrode, and an electrically conductive film which is supported by a dielectric form and which is in electrical contact with the first electrode and with the memory material plug. The dielectric form is wider near the first electrode, and is narrower near the phase change plug. The area of contact of the conductive film with the phase change plug is defined in part by the geometry of the dielectric form over which the conductive film is formed. Also, methods for making the device include steps of constructing a dielectric form over a first electrode, and forming a conductive film over the dielectric form.
摘要:
A bistable resistance random access memory is described for enhancing the data retention in a resistance random access memory member. A dielectric member, e.g. the bottom dielectric member, underlies the resistance random access memory member which improves the SET/RESET window in the retention of information. The deposition of the bottom dielectric member is carried out by a plasma-enhanced chemical vapor deposition or by high-density-plasma chemical vapor deposition. One suitable material for constructing the bottom dielectric member is a silicon oxide. The bistable resistance random access memory includes a bottom dielectric member disposed between a resistance random access member and a bottom electrode or bottom contact plug. Additional layers including a bit line, a top contact plug, and a top electrode disposed over the top surface of the resistance random access memory member. Sides of the top electrode and the resistance random access memory member are substantially aligned with each other.
摘要:
Thin film transistor memory cells are stackable, and employ bandgap engineered tunneling layers in a junction free, NAND configuration, that can be arranged in 3D arrays. The memory cells have a channel region in a semiconductor strip formed on an insulating layer, a tunnel dielectric structure disposed above the channel region, the tunnel dielectric structure having a multilayer structure including at least one layer having a hole-tunneling barrier height lower than that at the interface with the channel region, a charge storage layer disposed above the tunnel dielectric structure, an insulating layer disposed above the charge storage layer, and a gate electrode disposed above the insulating layer.
摘要:
A memory device includes an access device including a first doped semiconductor region having a first conductivity type, and a second doped semiconductor region having a second conductivity type opposite the first conductivity type. Both the first and the second doped semiconductor regions are formed in a single-crystalline semiconductor body, and define a p-n junction between them. The first and second doped semiconductor regions are implemented in isolated parallel ridges formed in the single-crystal semiconductor body. Each ridge is crenellated, and the crenellations define semiconductor islands; the first doped semiconductor region occupies a lower portion of the islands and an upper part of the ridge, and the second doped semiconductor region occupies an upper portion of the islands, so that the p-n junctions are defined within the islands.
摘要:
A stacked non-volatile memory device comprises a plurality of bit line and word line layers stacked on top of each other. The bit line layers comprise a plurality of bit lines that can be formed using advanced processing techniques making fabrication of the device efficient and cost effective. The device can be configured for NAND operation.
摘要:
A memory, comprising a metal portion, a first metal layer and second metal oxide layer is provided. The first metal oxide layer is on the metal portion, and the first metal oxide layer includes N resistance levels. The second metal oxide layer is on the first metal oxide layer, and the second metal oxide layer includes M resistance levels. The memory has X resistance levels and X is less than the summation of M and N, for minimizing a programming disturbance.
摘要:
An injection method for non-volatile memory cells with a Schottky source and drain is described. Carrier injection efficiency is controlled by an interface characteristic of silicide and silicon. A Schottky barrier is modified by controlling an overlap of a gate and a source/drain and by controlling implantation, activation and/or gate processes.
摘要:
A bistable resistance random access memory is described for enhancing the data retention in a resistance random access memory member. A dielectric member, e.g. the bottom dielectric member, underlies the resistance random access memory member which improves the SET/RESET window in the retention of information. The deposition of the bottom dielectric member is carried out by a plasma-enhanced chemical vapor deposition or by high-density-plasma chemical vapor deposition. One suitable material for constructing the bottom dielectric member is a silicon oxide. The bistable resistance random access memory includes a bottom dielectric member disposed between a resistance random access member and a bottom electrode or bottom contact plug. Additional layers including a bit line, a top contact plug, and a top electrode disposed over the top surface of the resistance random access memory member. Sides of the top electrode and the resistance random access memory member are substantially aligned with each other.
摘要:
A resistive random access memory including, an insulating layer, a hard mask layer, a bottom electrode, a memory cell and a top electrode is provided. The insulating layer is disposed on the bottom electrode. The insulating layer has a contact hole having a first width. The hard mask layer has an opening. A portion of the memory cell is exposed from the opening and has a second width smaller than the first width. The top electrode is disposed on the insulating layer and is coupled with the memory cell.
摘要:
A resistance random access memory in a bridge structure is disclosed that comprises a contact structure where first and second electrodes are located within the contact structure. The first electrode has a circumferential extending shape, such as an annular shape, surrounding an inner wall of the contact structure. The second electrode is located within an interior of the circumferential extending shape and separated from the first electrode by an insulating material. A resistance memory bridge is in contact with an edge surface of the first and second electrodes. The first electrode in the contact structure is connected to a transistor and the second electrode in the contact structure is connected to a bit line. A bit line is connected to the second electrode by a self-aligning process.