Abstract:
A method to manufacture reticulated metal foam via a dual investment solid mold includes pouring molten metal material into a mold while the mold is located on a chill plate. A method to manufacture reticulated metal foam includes pouring molten metal material into a mold while the mold is located on a chill plate, the chill plate configured to apply an externally driven temperature gradient in the mold so that solidification progresses from the chilled end to the non-chilled end
Abstract:
A method to manufacture reticulated metal foam via a dual investment, includes pre-investment of a precursor with a diluted pre-investment ceramic plaster then applying an outer mold to the encapsulated precursor as a shell-mold.
Abstract:
A solution is provided comprising a strong base, a corrosion inhibitor, wherein the strong base is an alkali metal hydroxide, wherein the corrosion inhibitor is at least one of an organic acid having a-COOH functional group or an alkali metal salt one of an organic acid having a-COOH functional groups.
Abstract:
A method of removing a core of a cast component includes providing a casting that includes a silica based ceramic core in a temperature controlled closed volume; cycling temperature between a first temperature and a second temperature within the temperature controlled closed volume that repeatedly subjects the silica based ceramic core to a beta-to-alpha cristobalite transition that induces microfractures in the silica based ceramic core; and after the cycling temperature, chemically dissolving the silica based ceramic core from the casting.
Abstract:
A method of removing a core of a cast component includes providing a casting that includes a silica based ceramic core in a temperature controlled closed volume; cycling temperature between a first temperature and a second temperature within the temperature controlled closed volume that repeatedly subjects the silica based ceramic core to a beta-to-alpha cristobalite transition that induces microfractures in the silica based ceramic core; and after the cycling temperature, chemically dissolving the silica based ceramic core from the casting.
Abstract:
An induction furnace assembly comprising a chamber having a mold; a primary inductive coil coupled to the chamber; a susceptor surrounding the chamber between the primary inductive coil and the mold; and a shield material contained in a reservoir coupled to or proximate the mold between the susceptor and the mold; the shield material configured to attenuate a portion of an electromagnetic flux generated by the primary induction coil that is not attenuated by the susceptor.
Abstract:
An induction furnace assembly comprising a chamber having a mold; a primary inductive coil coupled to the chamber; a layered susceptor comprising at least two layers of magnetic field attenuating material surrounding the chamber between the primary inductive coil and the mold to nullify the electromagnetic field in the hot zone of the furnace chamber.
Abstract:
A process for directional solidification of a cast part comprises energizing a primary inductive coil coupled to a chamber having a mold containing a material; energizing a primary inductive coil within the chamber to heat the mold via radiation from a susceptor, wherein the resultant electromagnetic field partially leaks through the susceptor coupled to the chamber between the primary inductive coil and the mold; determining a magnetic flux profile of the electromagnetic field; sensing a magnetic flux leakage past the susceptor within the chamber; generating a control field from a secondary compensation coil coupled to the chamber, wherein the control field controls the magnetic flux experienced by the cast part; and casting the material within the mold under the controlled degree of flux leakage.
Abstract:
A method to manufacture reticulated metal foam via a dual investment solid mold, includes pre-investing a precursor with a diluted pre-investment ceramic plaster to encapsulate the precursor; and investing the encapsulated precursor with a ceramic plaster within an mold of a varied cross-section. A varied cross-section mold includes a mold thickness adjacent to an outer periphery of a pattern at a top of the varied cross-section mold is between 200-500% a thickness between the outer periphery of the pattern at a base of the varied cross-section mold. A varied cross-section mold includes a trapezoidal prism shape with a pour cone in a top, the top larger than the base.
Abstract:
A method to manufacture reticulated metal foam via a dual investment solid mold, includes pre-investing a precursor with a diluted pre-investment ceramic plaster to encapsulate the precursor; and investing the encapsulated precursor with a ceramic plaster within an mold of a varied cross-section. A varied cross-section mold includes a mold thickness adjacent to an outer periphery of a pattern at a top of the varied cross-section mold is between 200-500% a thickness between the outer periphery of the pattern at a base of the varied cross-section mold. A varied cross-section mold includes a trapezoidal prism shape with a pour cone in a top, the top larger than the base.