Abstract:
Systems and methods for analyzing a customer deployment in a converged or hyper-converged infrastructure are disclosed. A machine learning model is trained based upon historical usage data of other customer deployments. A k-means clustering is performed to generate a prediction as to whether a deployment is configured for optimal failover. Recommendations to improve failover performance can also be generated.
Abstract:
Systems and methods for analyzing a customer deployment in a converged or hyper-converged infrastructure are disclosed. A machine learning model is trained based upon historical usage data of other customer deployments. A k-means clustering is performed to generate a prediction as to whether a deployment is configured for optimal failover. Recommendations to improve failover performance can also be generated.
Abstract:
The subject matter described herein provides virtual computing instance (VCI) component protection against networking failures in a datacenter cluster. Networking routes at the host level, VCI level, and application level are monitored for connectivity. Failures are communicated to a primary host or to a datacenter virtualization infrastructure that initiates policy-based remediation, such as moving affected VCIs to another host in the cluster that has all the necessary networking routes functional.
Abstract:
A management system and method for remediating poor-performing clients running in a distributed computer system uses a machine learning technique to automatically detect one or more poor-performing clients among a plurality of clients running in the distributed computer based on at least performance data and resource usage data of the clients. An action is then initiated to mitigate the effects of the poor-performing clients.
Abstract:
A management system and method for remediating poor-performing clients running in a distributed computer system uses a machine learning technique to automatically detect one or more poor-performing clients among a plurality of clients running in the distributed computer based on at least performance data and resource usage data of the clients. An action is then initiated to mitigate the effects of the poor-performing clients.