Abstract:
The invention relates to a method for providing power ramp rate control of a hybrid power plant with a plurality of energy assets including wind turbine generators and possibly solar power units, and an energy storage unit. Each energy asset has a ramp rate capability defined as the highest possible ramp rate at a given time, and the method includes receiving from each energy asset the corresponding ramp rate capability, and taking into account the ramp rate capabilities from the energy assets when calculating the power setpoint to each energy asset, so as to improve the power ramp rate control of the hybrid power plant.
Abstract:
The disclosure relates to a method of operating a wind power plant, and related power plant controller and wind power plant. The method comprises determining a first active power at a first operating point and applying a first limit value for a reactive power limit. The method further comprises determining a second active power at a second operating point. The method further comprises, responsive to determining that the second active power meets one or more active power conditions referenced to the first active power, applying a second limit value for the reactive power limit. Applying the second limit value comprises limiting a ramp rate of the reactive power limit. The method further comprises generating control signals for one or more wind turbines to control a collective reactive power output of the wind power plant in accordance with the reactive power limit.
Abstract:
Controlling a current injected to a power grid from a renewable power plant, in response to a voltage event in the power grid. At least a current at a point of common coupling between the renewable power plant and the power grid is determined and provided to a power plant controller (PPC). The PPC derives individual current setpoint corrections for at least some wind turbines, based on the determined current, and dispatches each derived current setpoint correction to wind turbine controllers of the corresponding wind turbines. The wind turbine controllers control a current output of the respective wind turbines, based on measurements of current and/or voltage at a point of connection between the wind turbine and an internal grid of the renewable power plant, and by taking into account the dispatched current setpoint correction.
Abstract:
Aspects of the present invention relate to a method for controlling a plurality of renewable energy generators. The method comprises: determining preliminary reactive power set points for the generators based on a reactive power reference value; determining generator-based and voltage-based reactive power limits for the generators; generating dispatch signals for requesting reactive power from the generators based on the preliminary set point and the limits; and dispatching the dispatch signals to the generators. The generator-based reactive power limits correspond to the reactive power capability of the generator. The voltage-based limits are determined by: determining a terminal voltage of the generator; comparing the determined terminal voltage to a voltage limit; and determining the voltage-based reactive power limit based on the comparison.
Abstract:
A power plant control system for a first renewable energy power plant comprising one or more renewable energy generators. The power plant control system comprises receiving means for receiving a power delivery demand from a transmission grid operator; control means configured to control the one or more renewable energy generators of the first renewable energy power plant so as to supply power that targets the received power delivery demand; and communication means configured to transmit a request to one or more further renewable energy power plant control systems to request operation of one or more power compensation units associated with respective ones of the further renewable energy power plants.
Abstract:
A wind power plant system comprising: a plurality of wind turbine generators each having a corresponding generator controller, and a power plant controller for controlling the power generated by the wind power plant system; wherein at least some of the plurality of generator controllers are each configured to: generate a model that indicates the thermal capacity of one or more components of the wind turbine generator, determine power capacity data from the model, said data relating to: at least one reactive power supply level and a corresponding time limit for which that reactive power supply level may be maintained, and transmit to the power plant controller the determined power capacity data, wherein the power plant controller is operable to receive the power capacity data from the plurality of generator controllers and to transmit respective power references to the plurality of generator controllers to control the power generated by the wind power plant system.
Abstract:
The present invention relates a method of controlling a wind power plant connected to an electrical grid, the wind power plant comprises a power plant controller (350), a plurality of wind turbine generators (1) and a STATCOM (230), with a STATCOM controller, comprises: controlling the plurality of wind turbine generators in a first control mode, with the power plant controller controlling a reactive power production from each of the plurality of wind turbine generators according to a closed loop control scheme, and controlling in a first control mode with a closed loop control scheme a reactive power production from the STATCOM according to a first setpoint dispatched from the power plant controller, and controlling the reactive power production from the STATCOM in a second control mode from the STATCOM controller according to an electrical measurement in the grid, and controlling the plurality of wind turbine generators in a second control mode, with the power plant controller controlling a reactive power production from the plurality of wind turbine generators, according to a feedforward control or a close loop control, based on a second setpoint from the STATCOM controller, and switching between the first control mode and the second control mode when receiving at least one trigger signal. The invention also relates to a wind power plant according to the method.
Abstract:
The present invention relates a power plant controller (PPC), the power plant controller to control produced power from a wind power plant (WPP), the wind power plant comprises at least a plurality of wind turbine generators, the wind power plant being connected to an electrical grid, wherein the power plant controller, in the event of receiving a signal indicative of a predefined event in the wind power plant, is capable of controlling the wind power plant so that the produced power, from the wind power plant to the electric grid, is a negative amount of active power. The invention also relates to a method for controlling a wind power plant connected to an electrical grid, the wind power plant comprises a plurality of wind turbine generators.
Abstract:
The present invention relates to a method for controlling a wind power plant, comprising one or more wind turbine generator(s) connected to an electrical grid, and a power plant controller having an operational mode, controlling electrical parameters, wherein the method comprises, determining a first voltage level of one or more wind turbine generator(s), determining if the first voltage level of one or more wind turbine generator(s) is outside a first predetermined range, in case the first voltage level of one or more wind turbine generator(s) is outside a first predetermined range then, changing the operational mode of the power plant controller between first and second operational modes, the first operational mode controlling a first electrical parameter, the second operational mode controlling a second electrical parameter, the first and second parameters being different. The present invention also relates to a power plant controller and a wind power plant operated according to the method.
Abstract:
The invention relates to a method for providing power ramp rate (RR) control of a hybrid power plant (100) with a plurality of energy assets (EA1, EA2, EA3) including wind turbine generators (WTG1, WTG2, WTG3) and possibly solar power units (PV1, PV2, PV3, 102), and an energy storage unit (ESU), Each energy asset has a ramp rate capability (RRC_i) defined as the highest possible ramp rate at a given time, and the method includes receiving from each energy asset the corresponding ramp rate capability, and taking into account the plurality of ramp rate capabilities from the energy assets when calculating the power setpoint (Pset_i) to each energy asset, so as to improve the power ramp rate (RR) control of the hybrid power plant (100).