Abstract:
An appliance includes a cabinet; a first compartment; and a second compartment. The first compartment and the second compartment are separated by a horizontal mullion. The cabinet also typically includes a coolant system that has: a single compressor for regulating a temperature of the first compartment and a temperature of the second compartment operably connected to at least one evaporator; a shared coolant fluid connection system; and a coolant fluid spaced within the shared coolant fluid connection system used to regulate both the temperature of the first compartment and the second compartment. The compressor can provide the shared coolant at least two different pressures to at least one evaporator using the shared coolant fluid connection circuit. The ratio of the substantially steady state heat gain for the first compartment to the substantially steady state total heat gain for the overall cabinet is about 0.65:1 or greater.
Abstract:
A multi-layer vacuum insulating panel that includes: a first barrier film having at least one polymeric material layer and; a second barrier film having at least one interior polymeric layer, a metal foil layer, and at least one exterior polymeric layer positioned on the opposite side of the metal foil layer as the at least one interior polymeric layer; a sealing junction between the first barrier film and the second barrier film at a sealing section about a perimeter of the first barrier film and the second barrier film where the first barrier film and the second barrier film physically and sealingly engage one another; and a multi-section central core having a first fumed silica region that contains at least one fumed silica compound and at least one fibrous (fiberglass) region that are each discrete regions within the interior volume.
Abstract:
An appliance door includes a vacuum insulated structure having a plurality of core sections that are folded to form an ice and/or water dispensing cavity on an outer side of the appliance door. The vacuum insulated door structure may be positioned between an outer door member and a door liner.
Abstract:
A thermal storage container is coupled to a pump for circulating cooled liquid from the thermal storage container in at least one of two circuits. One circuit includes a heat exchanger coupled to the fresh food evaporator for assisting in cooling the fresh food section of the refrigerator or for chilling the liquid. Another circuit includes a sub-cooler between the condenser and the evaporator for cooling the output from the condenser before entering the evaporator, hereby increasing the efficiency of the system. A three-way valve is coupled from the output pump to couple the stored coolant selectively to one or the other or both of the coolant circuits.
Abstract:
A refrigerator cooling system and method provides cooling to one or more features of a refrigerator by employing a secondary cooling loop that utilizes the excess cooling capacity of an evaporator to selectively provide supplemental cooling to the features when a thermal demand arises.
Abstract:
A method of forming a vacuum insulated refrigerator cabinet, the method comprising providing first and second sheets of material. The first sheet of material is thermoformed over a first forming tool forming a first intermediate structure. The first intermediate structure is then thermoformed over a second forming mold to create a second intermediate structure. The second sheet of material is then sealing connected with the second intermediate structure forming an annular space. A vacuum is created in the annular space creating a vacuum insulated cabinet.
Abstract:
A refrigeration system including a suction line heat exchanger having a first conduit including a refrigerant liquid which flows inside of the first conduit from the condenser to the evaporator. Also the refrigeration system includes a second conduit in thermal communication with the first conduit and includes a refrigerant fluid, typically a vapor, which flows inside of the second conduit in an opposite direction of flow from the first conduit from the evaporator to the compressor. Additionally, at least one heating device is in thermal communication with at least one of the first conduit and second conduit and is configured to communicate with a refrigeration control system to apply heat along a portion of both the first conduit and the second conduit adjacent to the heating device thereby regulating the flow rate of the refrigerant liquid in the first conduit and the second conduit.
Abstract:
A refrigerator includes a secondary cooling path for circulating liquid coolant through the refrigerator wherein the liquid coolant is cooled by the freezer compartment and wherein the liquid coolant cools the ice maker and the ice bin as the liquid coolant circulates through the secondary cooling path. A pump is positioned along the secondary cooling path for pumping the liquid coolant through the secondary cooling path. A tube having a first end proximate the pump and an opposite end exposed to atmosphere may control suction pressure associated with the pump. The refrigerator reduces frost build up through configuration of the secondary cooling path or performing ice harvesting operations which melt frost. The secondary cooling path may be used to provide for circulating hot liquid. The secondary cooling path may be used to provide for circulating liquid coolant during a power outage.
Abstract:
An appliance that includes a cabinet having an exterior surface; a refrigeration compartment located within the cabinet; and a hydrophilic structure disposed on the exterior surface. The hydrophilic structure is configured to spread condensation. The appliance further includes a wicking structure located in proximity to the hydrophilic structure, and the wicking structure is configured to receive the condensation.
Abstract:
A method of forming a vacuum insulated refrigerator cabinet, the method comprising providing first and second sheets of material. The first sheet of material is thermoformed over a first forming tool forming a first intermediate structure. The first intermediate structure is then thermoformed over a second forming mold to create a second intermediate structure. The second sheet of material is then sealing connected with the second intermediate structure forming an annular space. A vacuum is created in the annular space creating a vacuum insulated cabinet.