Abstract:
There is described an isocyanate-based polymer foam having improved anti-yellowing properties. The foam produced from a formulation comprising an isocyanate, a blowing agent, a first active hydrogen-containing compound and a second active hydrogen-containing compound different than the first active hydrogen-containing compound. The second active hydrogen-containing compound comprises an active hydrogen-containing phosphite compound. A process for producing such a foam is also described.
Abstract:
Methods and apparatus for expeditiously releasing network resources for a mobile station based on low battery and lost signal conditions are disclosed. The wireless network (104) receives a power down warning message from the mobile station (102) indicative of a low battery condition. The wireless network (104) then identifies whether a lost signal condition exists with the mobile station (102). In response to receiving the power down warning message and subsequently identifying the lost signal condition, the wireless network (104) causes network resources for the mobile station to be released. The wireless network (104) infers that the mobile station (102) has powered down due to low battery without enough time to send a power down registration to the wireless network (104).
Abstract:
A method of system access from a wireless device to a wireless network, the network having a plurality of base stations includes the steps of: selecting at least one reverse link cost metric from a list of predetermined reverse link cost metrics; determining a reverse link cost according to the selected at least one reverse link cost metric; selecting a candidate base station from the plurality of base stations; sending a probe signal at the reverse link cost to the candidate base station; waiting for a response from the candidate base station within a timeout period; and repeating steps until timeout, or until the condition that a response is received from at least one candidate base station so that at least one candidate base station can be used to provide system access from the wireless device to the wireless network.
Abstract:
An apparatus and method of controlling unsolicited traffic are disclosed herein. The apparatus and method can be applied to wireless communication networks such as CDMA2000, UMTS, GPRS and the like so that traffic which is not solicited by wireless communication devices operating on those networks is not sent over the air needlessly. The present application provides techniques to block unsolicited traffic based on the identity of a user (for example based on International Mobile Station Identity (IMSI), Network Access Identifier (NAI), Mobile Station Internet Services Digital Network Number (MSISDN), Session Initiation Protocol (SIP) Universal Resource Locator (url)) as opposed to techniques that are based on a session or IP address, such as a traditional firewall. In accordance to this application, user identity based techniques are applied to block unsolicited traffic whenever a user has established a data session. Further in accordance with this application, user identity based techniques are persisted across changes in IP address and/or session.
Abstract:
Techniques involving the management of display parameters are disclosed. For example, an apparatus may include a display, a radio module, and a control module. The display employs various operational parameters, which can take on different values. Exemplary parameters include refresh rate and/or pixel clock rate. The radio module may receive a wireless signal at one or more reception frequencies. The control module may select values for these operational parameters of the display. This selection may be made according to characteristics of interference that would be emitted from the display at the one or more reception frequencies. Upon making this selection, the control module may direct the display to employ the selected parameter values.
Abstract:
Various embodiments of systems and techniques for providing location-based services (LBS) to a mobile computing device having a dual processor architecture are described. In one or more embodiments, the mobile computing device may comprise or implement hardware and/or software configured to enable LBS and data communications sessions using a single active data stack at any particular point in time. Other embodiments are described and claimed.
Abstract:
Various embodiments for providing enhanced power savings in mobile computing devices are described. In one or more embodiments, a mobile computing device may monitor the battery power level remaining. The mobile computing device may select a wireless connection type for an application based on Quality of Service (QoS) requirements of the application and the amount of battery power remaining. The mobile computing device may switch the application from a higher QoS wireless connection type to a lower QoS wireless connection type when the battery power falls below a threshold. Other embodiments are described and claimed.
Abstract:
A method and apparatus for best service rescan scheduling on a mobile device operating in an EVDO hybrid mode, the method comprising the steps of: blocking a best service rescan on the mobile device if the mobile device in an EVDO traffic state, the mobile device characterized by blocking means, the blocking means enabled to block a best service rescan on the mobile device if the mobile device in an EVDO traffic state.
Abstract:
A test apparatus for conducting a radiated performance test on a wireless device under controlled test conditions, the test apparatus having an anechoic chamber; a test computer; and an interface, the interface adapted to connect the test computer to the wireless device, the test apparatus being adapted to: establish a data connection on the interface between the test computer and the wireless device; initialize and start a timer for a predetermined interval on the wireless device; subject the wireless device to the radiated performance test in the anechoic chamber after the predetermined interval; and analyze test results on the test computer from a test log stored on the wireless device during the radiated performance test, wherein the interface between the test computer and the wireless device is adapted to be removed during the predetermined interval; for conducting a radiated performance test on a wireless device.
Abstract:
Various embodiments for controlling dedicated data transmit mode (DDTM) in a mobile computing device are described. In one or more embodiments, the mobile computing device may support cellular voice communication and wireless data communication. The mobile computing device may comprise a DDTM control module coupled to a DDTM application. The DDTM application may prevent mobile terminated cellular voice communication from interrupting ongoing data communication when enabled. The DDTM control module may be configured to enable and disable the DDTM application. Other embodiments are described and claimed.