摘要:
An OLED device comprises a cathode, an anode, a light emitting layer, and on the cathode side of said emitting layer, a further layer containing a) a first compound that has the lowest LUMO value of the compounds in the layer, in an amount greater than or equal to 10% by volume and less than 100% by volume of the layer; b) at least one second compound exhibiting a higher LUMO value than the first compound, where at least one of the second compounds is a low voltage electron transport material, the total amount of such second compounds(s) is less than or equal to 90% by volume of the layer; and c) a metallic material based on a metal having a work function less than 4.2 eV.
摘要:
An OLED device comprises a cathode, an electron-transporting layer (ETL), a light-emitting layer (LEL) containing a fluorescent light-emitting material, a hole-transporting layer (HTL), and an anode, in that order, wherein the ETL comprises a mixture of compounds, including a first compound and at least one second compound, and wherein there is present a hole blocking layer (HBL) adjacent to the LEL on the cathode side. It provides a reduced drive voltage with comparable color hue.
摘要:
An OLED device comprises, in sequence, an anode, a light-emitting layer that comprises a phosphorescent light-emitting organometallic compound, a hole-blocking layer, and a cathode, and between the hole-blocking layer and the cathode, a further layer containing: a) a first compound that has the lowest LUMO value of the compounds in the layer, the amount being greater than or equal to 10% by volume and less than 100% by volume of the layer; b) at least one second compound that is a low voltage electron transport material, exhibiting a higher LUMO value than the first compound, the total amount of said compound(s) being less than or equal to 90% by volume and more than 0% by volume of the layer. Such a device provides improved drive voltage.
摘要:
An OLED device comprises a cathode, an anode, a light emitting layer, and on the cathode side of said emitting layer, a further layer, wherein the further layer is an electron-transporting layer containing: a) a first compound that has the lowest LUMO value of the compounds in the layer, the amount being greater than 10% by volume and less than 100% by volume of the layer; b) at least one second compound that is a low voltage electron transport material, exhibiting a higher LUMO value than the first compound, the total amount of said compound(s) being less than 90% by volume and more than 0% by volume of the layer; provided, that when paragraphs a) and b) each contain a single compound and the compound of paragraph a) is tris(8-quinolinolato)aluminum(III), then the compound of paragraph b) is not 4,7-diphenyl-1,10-phenanthroline; and provided further that when paragraphs a) and b) each contain a single compound and the compound of paragraph b) is tris(8-quinolinolato)aluminum(III), then the compound of paragraph a) is not 2,2′-(1,1′-biphenyl)-4,4′-diylbis(4,6-(p-tolyl)-1,3,5-triazine).
摘要:
An electroluminescent device comprising a host material and a rubrene derivative having a naphthacene nucleus comprising four fused phenyl rings a, b, c, and d, in order, containing two secondary phenyl ring groups linked to the “c” ring, each bearing directly or indirectly a fluoro or perfluoroalkyl group, wherein each fluoro or perfluoroalkyl group is either: a) linked directly to one of said secondary phenyl rings and is located on a meta or ortho position, or b) located in any position of another aryl group linked directly or indirectly to one of the secondary phenyl rings.
摘要:
A tandem OLED device includes an anode, a cathode, first and second electroluminescent units disposed between the anode and the cathode, and an intermediate connector disposed between the first and second electroluminescent units. Each of the electroluminescent units include at least one individually selected organic light-emitting layer, and the first electroluminescent unit includes a first electron-transporting layer disposed between the cathode and the light-emitting layer of the first electroluminescent unit, wherein the first electron-transporting layer includes a first electron-transporting material. The intermediate connector includes a first n-type doped organic layer disposed in contact with the first electron-transporting layer, and wherein the first n-type doped organic layer includes an n-type dopant and an electron-transporting material that is different from the first electron-transporting material.
摘要:
A tandem OLED includes an anode and a cathode. The OLED also includes at least two electroluminescent units disposed between the anode and the cathode, wherein each of the electroluminescent units includes at least one hole -transporting layer and one organic light-emitting layer. An intermediate connector is disposed between adjacent electroluminescent units, wherein the intermediate connector includes an n-doped organic layer and an electron-accepting layer, the electron-accepting layer being disposed closer to the cathode than the n-doped organic layer, and wherein the electron-accepting layer includes one or more organic materials, each having a reduction potential greater than −0.5 V vs. a Saturated Calomel Electrode, and wherein the one or more organic materials constitute more than 50% by volume of the electron-accepting layer.
摘要:
An OLED device includes an anode, a cathode, and at least one individually selected organic light-emitting layer disposed between the anode and cathode. The device also includes an electron-transporting layer disposed between the at least one light-emitting layer and the cathode, such electron-transporting layer including a first electron-transporting material, and an electron-injecting layer disposed between the electron-transporting layer and the cathode, such electron-injecting layer including a metal dopant having a work function less than 4.0 eV and an electron-transporting material that is different from the first electron-transporting material.
摘要:
A broadband-emitting OLED device having an anode and a cathode spaced from the anode includes a first light-emitting layer provided over the anode and containing a first host material and a first light-emitting material, wherein the first host material is a mixture of one or more mono-anthracene derivatives and one or more aromatic amine derivatives, wherein the mono-anthracene derivative(s) being provided in a volume fraction range of 5% to 50% relative to the total host volume, and the aromatic amine derivative(s) being provided in a volume fraction range of 50% to 95% relative to the total host volume, and a second light-emitting layer provided over or under the first light-emitting layer.
摘要:
A color OLED display having at least three different colored microcavity pixels, each including a light reflective structure and a semi-transparent structure includes an array of light-emitting microcavity pixels each having one or more common organic light-emitting layers, said light-emitting layer(s) including first and second light-emitting materials, respectively, that produce different light spectra, the first light-emitting material producing light having a first spectrum portion that extends between first and second different colors of the array, and the second light-emitting material producing light having a second spectrum portion that is substantially contained within a third color that is different from the first and second colors, and each different colored pixel being tuned to produce light in one of the three different colors whereby the first, second, and third different colors are produced by the OLED display.