Abstract:
Pigmented polymer particles may comprise a thermoplastic polymer and a pigment, wherein at least some of the pigmented polymer particles have a morphology according to (a), (b), (c), or any combination thereof: (a) the pigment having a coating comprising the thermoplastic polymer and the coated pigment adhered to a thermoplastic polymer particle, (b) the pigment being embedded in an outer surface of the thermoplastic polymer particle, and (c) the pigment being encapsulated by the thermoplastic polymer particle. The pigmented polymer particles, especially the highly spherical pigmented polymer particles, may be useful, among other things, as starting material for additive manufacturing. For example, a method may comprise: depositing, upon a surface, the foregoing pigmented polymer particles optionally in combination with other thermoplastic polymer particles; and once deposited, heating at least a portion of the particles to promote consolidation thereof and form a consolidated body.
Abstract:
Disclosed herein is a toner composition, developer and additive for a toner composition. The toner composition includes toner particles including at least one resin, an optional colorant, an optional wax, and a polymeric toner additive on at least a portion of an external surface of the toner particles. The polymeric toner additive includes a polymeric resin including a fluorinated acrylic monomer, a cross-linkable monomer containing two or more vinyl groups at 8 wt % to 40 wt % of the polymeric resin, and optionally a charge control agent comprised of a nitrogen containing group at 0.1 wt % to 1.5 wt % of the polymeric resin.
Abstract:
Disclosed herein is a toner composition, developer and additive for a toner composition. The toner composition includes toner particles including at least one resin, an optional colorant, an optional wax, and a polymeric toner additive on at least a portion of an external surface of the toner particles. The polymeric toner additive includes a polymeric resin including a fluorinated monomer, wherein the polymeric resin is less than 10% by weight crosslinked, and optionally a charge control agent comprising nitrogen containing group at 0.1 wt % to 1.5 wt % of the polymeric resin.
Abstract:
When making parts by additive manufacturing, particularly by fused filament fabrication, it is sometimes necessary to include a removable support during part fabrication due to the shape of the part. An overhang, for instance, may be fabricated using a support structure, which is subsequently eliminated following polymer matrix consolidation. Elimination of a removable support following part fabrication may be problematic in some instances. Polymer filaments suitable for forming removable supports during additive manufacturing may comprise at least one imide polymer having at least partial solubility in aqueous fluids. Imide polymers may include, for example, polyimides and polyesterimides. Additive manufacturing processes may comprise forming a supported part by depositing a build material and a removable support comprising an imide polymer, wherein at least a portion of the build material is deposited upon the removable support. An unsupported part may be formed following exposure of the supported part to an aqueous fluid.
Abstract:
Cold pressure fix toner compositions include at least one crystalline polyester having a melting point in a range from about 30° C. to about 130° C., a rosin acid-based polyester resin and an amorphous polyester having a Tg higher than the rosin acid-based polyester. The crystalline polyester can have a melting point in a range from about 30° C. to about 130° C., the rosin acid-based polyester resin can have a Tg in a range from about 0° C. to about −45° C. and an amorphous polyester having a Tg in a range from about 40° C. to about 70° C. The temperature difference between the rosin acid-based polyester resin and the amorphous polyester resin can be in a range from about 30° C. to about 110° C.
Abstract:
A cold pressure fix toner composition includes at least one crystalline polyester material having a melting point in a range from about 30° C. to about 130° C. and at least one C16 to C80 amorphous organic material having a Tg of from about −30° C. to about 70° C. A method of cold pressure fix toner application includes providing the cold pressure fix toner composition, disposing the cold pressure fix toner composition on a substrate, and applying pressure to the disposed composition on the substrate under cold pressure fixing conditions. A latex can be formed from the cold pressure fix toner composition.
Abstract:
A toner composition includes toner particles and an additive disposed on exterior surfaces of the toner particles, the additive includes uncoated silicon carbide particles, the toner composition is substantially free of one or more rare earth compound and the uncoated silicon carbide particles are present in a sufficient amount to reduce bias charge roller contamination.
Abstract:
When making parts by additive manufacturing, particularly by fused filament fabrication, it is sometimes necessary to include a removable support during part fabrication due to the shape of the part. An overhang, for instance, may be fabricated using a support structure, which is subsequently eliminated following polymer matrix consolidation. Elimination of a removable support following part fabrication may be problematic in some instances. Polymer filaments suitable for forming removable supports during additive manufacturing may comprise at least one imide polymer having at least partial solubility in aqueous fluids. Imide polymers may include, for example, polyimides and polyesterimides. Additive manufacturing processes may comprise forming a supported part by depositing a build material and a removable support comprising an imide polymer, wherein at least a portion of the build material is deposited upon the removable support. An unsupported part may be formed following exposure of the supported part to an aqueous fluid.
Abstract:
Disclosed herein is a toner composition, developer and additive for a toner composition. The toner composition includes toner particles comprising at least one resin, an optional colorant, an optional wax, and a polymeric toner additive on at least a portion of an external surface of the toner particles. The polymeric toner additive includes a polymeric resin comprising a cross-linked fluorinated acrylic monomer, a cross-linkable monomer containing two or more vinyl groups at 8 wt% to 40 wt% of the polymeric resin, and optionally a charge control agent comprising nitrogen containing group at 0.1 wt% to 1.5 wt% of the polymeric resin.
Abstract:
Additive manufacturing processes featuring consolidation of thermoplastic particulates may form printed objects in a range of shapes. Nanoparticles disposed upon the outer surface of the thermoplastic particulates may improve flow performance of the thermoplastic particulates during additive manufacturing, but may lead to excessive porosity following consolidation. Excessive porosity may be detrimental for performance applications requiring high mechanical strength. A carboxylic acid-based sintering aid, particularly a metal carboxylate, may decrease porosity of consolidated parts following sintering without substantially increasing blocking in a powder bed. Particulate compositions suitable for additive manufacturing may comprise: a plurality of thermoplastic particulates comprising a carboxylic acid-based sintering aid admixed with a thermoplastic polymer, and a plurality of nanoparticles disposed upon an outer surface of the thermoplastic particulates.