摘要:
According to particular embodiments, determining paths in a network with asymmetric switches includes receiving a graph representing the network. Each asymmetric switch has defined degree connectivity between one or more pairs of degrees of the asymmetric switch. The graph is transformed to yield a transformed graph that accounts for the asymmetric switches. A routing process is applied to the transformed graph to yield one or more paths through the network.
摘要:
A method and system provide coherent anti-Stokes Raman spectroscopy. In an embodiment, the system includes a detection system for measuring coherent anti-Stokes Raman signals of a sample. The system includes a first light pulse and a second light pulse. The first light pulse and the second light pulse are operable to initiate coherent vibration in the sample. The system also includes a third light pulse. The third light pulse is a probe pulse that is operable to produce scattered radiation from the sample. In addition, the system includes a spectral filter. The spectral filter shapes the probe pulse. The system further includes a detector to record the spectrum of the scattered radiation.
摘要:
The present surface detail rendering technique provides an efficient technique for applying a mesostructure to a macrostructure for an object that minimizes the amount of memory required for pre-computed data. A leap texture is pre-computed for a mesostructure by classifying each voxel in the mesostructure geometry and assigning a value in the leap texture based upon the classification. The value in the leap texture represents a distance to jump along a ray cast in any view direction when a model is decorated with the mesostructure geometry.
摘要:
A computer implemented method for generating a representation of structure for use in rendering a synthesized image is provided. The representation is a view-dependent displacement mapping that represents displacements along a viewing direction. This view dependency allows the representation to be used to determine self shadows as well as shading, occlusion and silhouettes when used during rendering for synthesis.
摘要:
A computer implemented method for generating a representation of structure for use in rendering a synthesized image is provided. The representation is a view-dependent displacement mapping that represents displacements along a viewing direction. This view dependency allows the representation to be used to determine self shadows as well as shading, occlusion and silhouettes when used during rendering for synthesis.
摘要:
A computer implemented method for generating a representation of structure for use in rendering a synthesized image is provided. The representation is a view-dependent displacement mapping that represents displacements along a viewing direction. This view dependency allows the representation to be used to determine self shadows as well as shading, occlusion and silhouettes when used during rendering for synthesis.
摘要:
A “mesostructure renderer” uses pre-computed multi-dimensional “generalized displacement maps” (GDM) to provide real-time rendering of general non-height-field mesostructures on both open and closed surfaces of arbitrary geometry. In general, the GDM represents the distance to solid mesostructure along any ray cast from any point within a volumetric sample. Given the pre-computed GDM, the mesostructure renderer then computes mesostructure visibility jointly in object space and texture space, thereby enabling both control of texture distortion and efficient computation of texture coordinates and shadowing. Further, in one embodiment, the mesostructure renderer uses the GDM to render mesostructures with either local or global illumination as a per-pixel process using conventional computer graphics hardware to accelerate the real-time rendering of the mesostructures. Further acceleration of mesostructure rendering is achieved in another embodiment by automatically reducing the number of triangles in the rendering pipeline according to a user-specified threshold for acceptable texture distortion.
摘要:
A VTOL (vertical take-off and landing) rotorcraft with distributed propulsion system having the capability to convert to airplane flight. The rotorcraft includes a fuselage, a tail boom or tail fin, a pair of wings, a pair of transversally extended forward pivotable rotor booms, a plurality of forward proprotor mounted to the pivotable rotor booms, a plurality of rear lift rotor mounted to the tail boom, and a stabilizer mounted on the tail boom or tail fin. The proprotor and lift rotor can be open rotor or ducted rotor design. The proprotors in a first configuration and lift rotors provide thrust vector for VTOL (vertical take-off and landing) flight. Moreover, the proprotors in a second configuration provide the forward propulsive thrust in airplane flight.
摘要:
The invention is for a VTOL (vertical take-off and landing) rotorcraft with the annular contra-rotating rotary wings and auxiliary propulsor. The rotary wing of the annular contra-rotating rotary wings is driven by a plurality of tangential forces applied at multiple locations of the inner hub or at the tip of the blade. The annular contra-rotating rotary wings can be shrouded with a nacelle for the improvement of propulsive efficiency, reduction of noise and protection of the rotary wing. The fuselage is mounted along the center axis of the rotary to be outside of the thrust slipstream. The auxiliary propulsor includes a quad independent pusher propeller to propel the rotorcraft to reach faster forward speed.
摘要:
A method for extracting scintillation pulse information includes followed steps: 1. obtaining a peak value of the scintillation pulse in a certain energy spectrum, and setting at least three threshold voltages according to the peak value; 2. determining the time when the scintillation pulse passes through the each threshold voltage, wherein each time value and its corresponding threshold voltage form a sampling point; 3. selecting multiple sampling points as sampling points for reconstructing and reconstructing pulse waveform; 4. obtaining the data of original scintillation pulse by using reconstructed pulse waveform. A device for extracting scintillation pulse information includes a threshold voltage setting module (100), a time sampling module (200), a pulse reconstruction module (300) and an information acquiring module (400).