摘要:
A method and system for detecting multiple objects in an image is disclosed. A plurality of objects in an image is sequentially detected in an order specified by a trained hierarchical detection network. In the training of the hierarchical detection network, the order for object detection is automatically determined. The detection of each object in the image is performed by obtaining a plurality of sample poses for the object from a proposal distribution, weighting each of the plurality of sample poses based on an importance ratio, and estimating a posterior distribution for the object based on the weighted sample poses.
摘要:
A method and system for automatic multi-organ segmentation in a 3D image, such as a 3D computed tomography (CT) volume using learning-base segmentation and level set optimization is disclosed. A plurality of meshes are segmented in a 3D medical image, each mesh corresponding to one of a plurality of organs. A level set in initialized by converting each of the plurality of meshes to a respective signed distance map. The level set optimized by refining the signed distance map corresponding to each one of the plurality of organs to minimize an energy function.
摘要:
A method for detecting an object of interest in an input image includes the computer-implemented steps of: receiving an image, providing a multi-class pose classifier that identifies a plurality of pose features for estimating a pose of the object of interest, providing a plurality of cascades of serially-linked binary object feature classifiers, each cascade corresponding to different poses of the object of interest in the input image, selecting at least one of the cascades using the estimated pose, and employing the selected cascades to detect instances of the object of interest in the image.
摘要:
A method and system for fully automatic segmentation the prostate in magnetic resonance (MR) image data is disclosed. Intensity normalization is performed on an MR image of a patient to adjust for global contrast changes between the MR image and other MR scans and to adjust for intensity variation within the MR image due to an endorectal coil used to acquire the MR image. An initial prostate segmentation in the MR image is obtained by aligning a learned statistical shape model of the prostate to the MR image using marginal space learning (MSL). The initial prostate segmentation is refined using one or more trained boundary classifiers.
摘要:
A method and system for automatic lung segmentation in magnetic resonance imaging (MRI) images and videos is disclosed. A plurality of predetermined key landmarks of a lung are detected in an MRI image. The key landmarks may be detected using discriminative joint contexts representing combinations of multiple key landmarks. A lung boundary is segmented in the MRI image based on the detected key landmarks. The landmark detection and the lung boundary segmentation can be repeated in each frame of an MRI video.
摘要:
A method and system for segmenting multiple organs in medical image data is disclosed. A plurality of landmarks of a plurality of organs are detected in a medical image using an integrated local and global context detector. A global posterior integrates evidence of a plurality of image patches to generate location predictions for the landmarks. For each landmark, a trained discriminative classifier for that landmark evaluates the location predictions for that landmark based on local context. A segmentation of each of the plurality of organs is then generated based on the detected landmarks.
摘要:
A method and system for fully automatic segmentation the prostate in magnetic resonance (MR) image data is disclosed. Intensity normalization is performed on an MR image of a patient to adjust for global contrast changes between the MR image and other MR scans and to adjust for intensity variation within the MR image due to an endorectal coil used to acquire the MR image. An initial prostate segmentation in the MR image is obtained by aligning a learned statistical shape model of the prostate to the MR image using marginal space learning (MSL). The initial prostate segmentation is refined using one or more trained boundary classifiers.
摘要:
For cloud-based computer assisted detection, hierarchal detection is used, allowing detection on data at progressively greater resolutions. Detected locations at coarser resolutions are used to limit the data transmitted at greater resolutions. Data is only transmitted for neighborhoods around the previously detected locations. Subsequent detection using higher resolution data refines the locations, but only for regions associated with previous detection. By limiting the number and/or size of regions provided at greater resolutions based on the previous detection, the progressive transmission avoids transmission of some data. Additionally, or alternatively, lossy compression may be used without or with minimal reduction in detection sensitivity.
摘要:
A method and system for patient-specific computational modeling and simulation for coupled hemodynamic analysis of cerebral vessels is disclosed. An anatomical model of a cerebral vessel is extracted from 3D medical image data. The anatomical model of the cerebral vessel includes an inner wall and an outer wall of the cerebral vessel. Blood flow in the cerebral vessel and deformation of the cerebral vessel wall are simulated using coupled computational fluid dynamics (CFD) and computational solid mechanics (CSM) simulations based on the anatomical model of the cerebral vessel.
摘要:
A method and system for automatic multi-organ segmentation in a 3D image, such as a 3D computed tomography (CT) volume using learning-base segmentation and level set optimization is disclosed. A plurality of meshes are segmented in a 3D medical image, each mesh corresponding to one of a plurality of organs. A level set in initialized by converting each of the plurality of meshes to a respective signed distance map. The level set optimized by refining the signed distance map corresponding to each one of the plurality of organs to minimize an energy function.