摘要:
A method and system for fully automatic segmentation the prostate in magnetic resonance (MR) image data is disclosed. Intensity normalization is performed on an MR image of a patient to adjust for global contrast changes between the MR image and other MR scans and to adjust for intensity variation within the MR image due to an endorectal coil used to acquire the MR image. An initial prostate segmentation in the MR image is obtained by aligning a learned statistical shape model of the prostate to the MR image using marginal space learning (MSL). The initial prostate segmentation is refined using one or more trained boundary classifiers.
摘要:
A method and system for fully automatic segmentation the prostate in magnetic resonance (MR) image data is disclosed. Intensity normalization is performed on an MR image of a patient to adjust for global contrast changes between the MR image and other MR scans and to adjust for intensity variation within the MR image due to an endorectal coil used to acquire the MR image. An initial prostate segmentation in the MR image is obtained by aligning a learned statistical shape model of the prostate to the MR image using marginal space learning (MSL). The initial prostate segmentation is refined using one or more trained boundary classifiers.
摘要:
Automatic prostate localization in T2-weighted MR images facilitate labor-intensive cancer imaging techniques. Methods and systems to accurately segment the prostate gland in MR images are provided and address large variations in prostate anatomy and disease, intensity inhomogeneities, and artifacts induced by endorectal coils. A center of the prostate is automatically detected with a boosted classifier trained on intensity based multi-level Gaussian Mixture Model Expectation Maximization (GMM-EM) segmentations of the raw MR images. A shape model is used in conjunction with Multi-Label Random Walker (MLRW) to constrain the seeding process within MLRW.
摘要:
Automatic prostate localization in T2-weighted MR images facilitate labor-intensive cancer imaging techniques. Methods and systems to accurately segment the prostate gland in MR images are provided and address large variations in prostate anatomy and disease, intensity inhomogeneities, and artifacts induced by endorectal coils. A center of the prostate is automatically detected with a boosted classifier trained on intensity based multi-level Gaussian Mixture Model Expectation Maximization (GMM-EM) segmentations of the raw MR images. A shape model is used in conjunction with Multi-Label Random Walker (MLRW) to constrain the seeding process within MLRW.
摘要:
In a method for image guided prostate cancer needle biopsy, a first registration is performed to match a first image of a prostate to a second image of the prostate. Third images of the prostate are acquired and compounded into a three-dimensional (3D) image. The prostate in the compounded 3D image is segmented to show its border. A second registration and then a third registration different from the second registration is performed on distance maps generated from the prostate borders of the first image and the compounded 3D image, wherein the first and second registrations are based on a biomechanical property of the prostate. A region of interest in the first image is mapped to the compounded 3D image or a fourth image of the prostate acquired with the second modality.
摘要:
In a method for image guided prostate cancer needle biopsy, a first registration is performed to match a first image of a prostate to a second image of the prostate. Third images of the prostate are acquired and compounded into a three-dimensional (3D) image. The prostate in the compounded 3D image is segmented to show its border. A second registration and then a third registration different from the second registration is performed on distance maps generated from the prostate borders of the first image and the compounded 3D image, wherein the first and second registrations are based on a biomechanical property of the prostate. A region of interest in the first image is mapped to the compounded 3D image or a fourth image of the prostate acquired with the second modality.
摘要:
A PET examination which acquires a data record of the body of a patient is carried out during at least one embodiment of a method for acquiring measured data. On the basis of the measured values of the data record, at least one region of interest in the body of the patient is determined, in which at least one examination of at least one embodiment of a method is carried out.
摘要:
In a method and MR apparatus for the automatic segmentation of flow images acquired by magnetic resonance tomography for the depiction of tissue or organs traversed with fluid such as blood, at least one phase image of a selected region of the subject is acquired by magnetic resonance tomography, and fluid-traversed regions in the at least one phase image are automatically segmented.
摘要:
A fastening device is for anchoring a surgical or diagnostic medical aid in the tissue of a human or animal hollow organ. The fastening device includes an anchor head, which is configured to penetrate the tissue; a driving device for driving the anchor head into the tissue; and a trigger device to trigger the driving of the anchor head into the tissue.
摘要:
In a method and control apparatus for tracking a contrast agent using an imaging medical device a test bolus of a contrast agent is initially injected into an examination subject, followed by an injection of a main bolus at a time interval of &Dgr;ti. The arrival of the test bolus in the observation volume is chronologically determined by periodically repeated survey measurements. An image data measurement is started at a time interval &Dgr;tm subsequent to the detection of the test bolus, this time interval &Dgr;tm being defined according to the prescribed time interval &Dgr;ti.