Abstract:
A signal processing device includes a processing circuit and a signal generating circuit. The processing circuit is implemented for determining a position of at least one defective area on an optical storage medium according to a defect signal, and accordingly recording defect position information of the at least one defective area. The signal generating circuit is coupled to the processing circuit, and implemented for generating an output signal according to at least the recorded defect position information of the at least one defective area.
Abstract:
An electrical device and a loop control method are provided. A data signal is obtained from a front end. A variable gain amplifier amplifies the data signal based on a gain value. An analog to digital converter samples the amplified data signal output therefrom to generate a digital data signal. A peak bottom detector detects a peak level and a bottom level of the digital data signal. A threshold controller compares the peak and bottom levels with a threshold value, and generates a first control signal accordingly. An auto gain controller updates the gain value based on the peak and bottom levels with a first step size. The first step size is determined by the first control signal.
Abstract:
The present invention provides a light-enhancing component and a fabrication method thereof by using the focused-ion-beam. In the present invention, the surface plasmon polariton structure is coated on the surface of the optical fiber so as to form the light-enhancing component. When the light passes through the optical fiber, the luminous flux transmitted through the aperture on the surface plasmon polariton is enhanced, and the light beam smaller than the diffraction limitation can be transmitted to the far-field, i.e. the nano-optic sword is formed. The light-enhancing component of the present invention can be used for the optical data storage, the optical microscopy, the biomedical detections and the lithography to perform the extra optical resolutions beyond the diffraction limitation.
Abstract:
A buffer structure is provided, including a main body. The main body has a first face, a second face, and a predetermined thickness between the first face and the second face, the first face has a plurality of first holes, the second face has a plurality of second holes, and the plurality of first holes and the plurality of second holes are located within the predetermined thickness. Side walls of the plurality of first holes are integrally and continuously connected to side walls of the plurality of second holes.
Abstract:
A method for evaluating usage of an application by a user on a portable device includes: obtaining an evaluation value regarding usage of the application within an evaluation period, the evaluation value beingassociated with one of an accumulated number of times during the evaluation period, an accumulated usage duration during the evaluation period, and a median/average of multiple numbers of times of the usage at. respective time segments within the evaluation period; generating a comparison result; and based on the comparison result, outputting one of a positive feedback without interrupting execution of the application, and. a negative feedback to require user interaction with the portable device.
Abstract:
A method for evaluating usage of an application by a user includes: obtaining screen information regarding use of the portable device during a predetermined time period; determining a number of times of usage of an application for each day within the predetermined time period; calculating a usage duration for each time of execution of the application; calculating a daily usage duration for each day; selecting at least one usage duration for each day; calculating an evaluation value based on one of the at least one usage duration, the number of times of usage of the application for each day, and the daily usage duration; and generating an evaluation result based on the evaluation value and a preset standard.
Abstract:
An apparatus for improving decoding accuracy of an equalized signal having a direct current (DC) level obtained from an optical disk is provided. A Viterbi decoder is configured to decode the equalized signal and output a Viterbi-decoded signal. A DC controller is configured to adjust the DC level of the equalized signal such that the equalized signal with the adjusted DC level is decoded.
Abstract:
Disclosed herein is the use of an extract from an Aster species for the preparation of a medicament for the treatment of opioid-induced constipation. The extract is extracted from fresh and/or dried roots and rhizomes of a Tatarian aster (Aster tartaricus) plant, in which the extraction uses water or 40-95% (v/v) ethanol as an extractant to obtain an extraction mixture. In some embodiments, the extraction mixture is then eluted with water followed by at least one eluent.
Abstract:
The present invention relates to a monochromatic measurement system. The system mainly includes a monochromator, a light-detecting device and a filter device. The monochromator functions to split light under test into respective light beams with different wavelengths. The filter device modulates the transmission efficiency of the respective light beams, so that the wavelengths of the light beams to which the light-detecting device displays a better response have a lower transmission efficiency while the wavelengths of the light beams to which the light-detecting device displays a lower response have a higher transmission efficiency. The response values measured by the light-detecting device with respect to different wavelength intervals are normalized accordingly. The measurement errors attributed to the measurement precision of the instrument and the environmental noise are independent from the variation of wavelength. The reliability of the measurement instrument is elevated.
Abstract:
An apparatus for generating Viterbi-processed data using an input signal obtained from reading an optical disc includes a Viterbi decoding unit and a control circuit. The Viterbi decoding unit is arranged to process the input signal and generate the Viterbi-processed data. In addition, the control circuit is arranged to control at least one component of the apparatus based upon at least one signal within the apparatus. Additionally, the component includes a phase locked loop (PLL) processing unit, an equalizer, and/or the Viterbi decoding unit. An associated apparatus including an equalizer and a Viterbi module is further provided. An associated apparatus including a Viterbi decoding unit and a control circuit is also provided. An associated apparatus including an equalizer, at least one offset/gain controller, and a Viterbi module is further provided. An associated apparatus including an equalizer, a Viterbi module, and a peak/bottom/central (PK/BM/DC) detector is also provided.