Abstract:
An enclosure or plenum that supports a looped pump tube is hingedly connected to a framed thin-walled heat exchange bag through which working fluid from an intravascular heat exchange catheter flows. The frame with bag can be inserted between cold plates to exchange heat with the working fluid flowing through the bag. With the framed bag between the plates, the looped pump tube from the enclosure or plenum is receivable in the raceway of a peristaltic pump, which pumps working fluid through the system.
Abstract:
A peristaltic pump has an arcuate raceway wife a partially concave inner surface extending through an arc of at least one hundred eighty degrees (180°). The are defines a midpoint, and a rotor faces the inner surface of the raceway and is both rotatable relative to the raceway and transitionally movable relative to the raceway between a pump position, wherein the rotor is spaced from the midpoint a first distance, and a tube load position, wherein the rotor is spaced from the midpoint a second distance greater than the first distance. A rotor motor is coupled to the rotor to rotate the rotor and rollers arranged on the rotor to contact tubing disposed between the rotor and the raceway when the rotor is in the pump position. A loading motor moves the rotor toward and away from the raceway.
Abstract:
A temperature management system is configured to control a temperature of a patient's body using a heat exchange device. The temperature management system is configured to deliver temperature management treatment or therapy to a patient. A user interface of the system is configured to display operational data and patient data on the user interface in a configuration that allows a user to determine or review one or more periods of the performed temperature management treatment.
Abstract:
A portable system for managing the temperature of a patient during transport includes a heater/cooler configured to be in fluid communication with a heat transfer catheter or a heat transfer surface pad; a pump for circulating heat exchange fluid; an alternating current power supply; and a processor configured to indicate if the alternating current power supply connection to the source of alternating current is interrupted. A rechargeable battery may be configured to provide power to the system when the alternating power supply is not connected to a source of alternating current. If the system is powered on and the connection to the alternating current source is interrupted, the system may automatically switch to receiving power from the rechargeable battery. The processor may alert an operator of the interruption of the connection to the alternating current source and indicate to the operator the amount of energy remaining in the battery.
Abstract:
An enclosure or plenum that supports a looped pump tube is hingedly connected to a framed thin-walled heat exchange bag through which working fluid from an intravascular heat exchange catheter flows. The frame with bag can be inserted between cold plates to exchange heat with the working fluid flowing through the bag. With the framed bag between the plates, the looped pump tube from the enclosure or plenum is receivable in the raceway of a peristaltic pump, which pumps working fluid through the system.
Abstract:
A temperature management system controls a temperature of a body of a patient and determines a value indicative of a thermoregulatory activity of the patient. The system includes a heat exchange system configured to exchange heat with a body of a patient and to record operational data while controlling the temperature of the body of the patient. The temperature management system receives temperature data from a sensor, controls the heat exchange system to maintain the temperature of the body of the patient within a target temperature range, receives, in response to the controlling, operational data, determines, based on the temperature data and the operational data, a value indicative of a thermoregulatory activity of the patient, and generates, based on the value, an alert through the user interface indicating the thermoregulatory activity of the patient.
Abstract:
A working fluid cassette for an intravascular heat exchange catheter includes a frame holding two closely spaced, square polymeric membranes in tension. Working fluid from the catheter is directed between the membranes. The cassette is closely received between two refrigerant cold plates to exchange heat with the working fluid, which is circulated back to the catheter.
Abstract:
A working fluid cassette for an intravascular heat exchange catheter includes a frame holding two closely spaced, square polymeric membranes in tension. Working fluid from the catheter is directed between the membranes. The cassette is closely received between two refrigerant cold plates to exchange heat with the working fluid, which is circulated back to the catheter.
Abstract:
A working fluid cassette for an intravascular heat exchange catheter includes a frame holding two closely spaced, square polymeric membranes along the sides of which are disposed inlet and outlet tubes. Working fluid from the catheter is directed from the inlet tube between the membranes to the outlet tube. The cassette is closely received between two refrigerant cold plates to exchange heat with the working fluid, which is circulated back to the catheter.