Abstract:
Provided are a method and apparatus for processing information. The apparatus includes: one or more memories, configured to store parameters of one basic parity check matrix set; and one or more processors, configured to encode information bits to be encoded or decode data to be decoded using the basic parity check matrix set Hb, wherein at least 50 percent of short loops-4 in a basic parity check matrix Hbj1 among all basic parity check matrices in the basic parity check matrix set Hb except Hbj0 are the same as short loops-4 in the Hbj0, where j0 is a fixed positive integer between 0 and L−1, L is the number of basic parity check matrices contained in the basic parity check matrix set, and j1=0, 1, . . . , j0−1, j0+1, . . . , L−1.
Abstract:
Techniques are described to indicate beamforming related information to a smart node that forwards signals to a base station (BS) and/or a user equipment (UE). An example wireless communication method includes receiving, by a first network node from a second network node, a configuration information that indicates information about a number of spatial settings configured for the first network node, where each of the number of spatial settings corresponds to a spatial domain filter used by the first network node to communicate with one or more communication nodes.
Abstract:
The present disclosure relates to methods, systems and devices for use in a wireless terminal includes transmitting, to a wireless network node, a preamble comprising a plurality of parts, wherein each of the plurality of parts comprises at least one sub-preamble and the sub-preambles in the plurality of parts are generated based on a plurality of roots.
Abstract:
A system and method for generating and processing preambles in wireless communication are disclosed herein. In one embodiment, the system and method are configured to receive, from a wireless communication node, a message indicating a first sequence configuration including a set of predefined parameters and a second sequence configuration including a plurality of sets of parameters; generate a first part of a random access preamble based on the set of predefined parameters; generate a second part of the random access preamble based on selecting one of the plurality of sets of parameters; and transmit the random access preamble to the wireless communication node, wherein the first part is configured to be used by the wireless communication node to locate the second part in a time domain.
Abstract:
A method for implementing parallel multi-user data transmission and a primary node are disclosed. The method includes: a primary node receiving uplink parallel multi-user data; and the primary node using a radio frame carrying multiple pieces of user data acknowledgement/paging information as a feedback frame to acknowledge the received uplink parallel multi-user data, and indicate respectively whether each of users is able to continue to send uplink data.
Abstract:
An encoding method, decoding method, encoding device and decoding device for structured LDPC codes. The method includes: determining a basic matrix used for encoding, which includes K0 up-and-down adjacent pairs; and according to the basic matrix and an expansion factor corresponding to the basic matrix, performing an LDPC encoding operation of obtaining a codeword of Nb×z bits according to source data of (Nb−Mb)×z bits, herein z is the expansion factor, and z is a positive integer which is greater than or equal to 1. The provided technical solution is applicable to the encoding and decoding of the structured LDPC, thereby realizing the encoding and decoding of LDPC at the high pipeline speed.
Abstract:
The method includes code block segmentation is performed on a physical layer source data packet, to be sent, having a length of Ks bits, and channel coding is performed on each code block obtained by segmentation, to obtain Cs error-corrected and coded source data sub-packets having lengths of Kc bits; packet coding is performed on the error-corrected and coded source data sub-packets, to obtain Cp check data sub-packets; Ki codeword bits are selected from the ith sub-packet in Cs source data sub-packets, Kj codeword bits are selected from the jth sub-packet in the Cp check data sub-packets, all the selected bits are cascaded together to form a sequence having a length of formula (I), i=0, 1, . . . , Cs−1, j=0, 1, . . . , Cp−1, and the sequence is sent, herein Ks, Cs and Kc are integers greater than 1, and Cp, Ki and Kj are integers greater than or equal to 0.
Abstract:
Provided are a method and a device for processing parallel transmission. The method includes that: node types of multiple secondary nodes used for parallel transmission are determined, the node types include a second-type secondary node supporting or enabling parallel message processing (S202); a resource negotiation manner used for negotiating resources of each secondary node for parallel transmission is determined according to the determined node types (S204); corresponding resources corresponding to the multiple secondary nodes respectively are determined according to the determined resource negotiation manner (S206); and parallel transmission processing is performed on the multiple secondary nodes according to the corresponding resources (S208). By the present disclosure, and the effects of effectively avoiding interference to parallel transmission, effectively achieving compatibility with new and old equipment of the network and effectively improving efficiency of the network are achieved.
Abstract:
A method and system for sending a radio frame are provided. In the method, a first Personal basic service set Control Point (PCP)/Access Point (AP) sends indication information to a second PCP/AP, wherein the indication information is used for notifying the second PCP/AP to send a first radio frame containing network signalling information over a primary channel of the first PCP/AP, and working channels of the first PCP/AP are divided into the primary channel and a secondary channel; and the second PCP/AP sends the first radio frame over the primary channel according to the indication information. According to the technical solution, time-frequency space-domain resources of a network can be reasonably scheduled and allocated, thereby reducing the mutual interference and improving the resource utilization rate.
Abstract:
The method includes: an intercepting station detecting a first radio signal of a third-party station and updating a local network allocation vector and/or response indication deferral; triggering a channel contention access procedure when determining that a second radio signal of the third-party station meets a spatial orthogonal condition, and then completing data transmission within updated time. In the case that the network allocation vector or response indication deferral is not 0, the third-party station ignoring or resetting the network allocation vector or the response indication deferral when determining that a sector transmission in a transmission initiated by the station is orthogonal with a transmission space to be carried out by itself, the third-party station initiating a contention and starting the spatial orthogonal transmission within a duration indicated by the updated network allocation vector or the response indication deferral.