Abstract:
A target, made of two layers, that has an animal design. The animal design on the bottom layer has at least two zones which correspond to a level of effectiveness of a bullet strike within that zone. Each level of effectiveness is indicated by a color and each animal design has at least two levels of effectiveness.
Abstract:
The present invention provides cyclic nitro compound, pharmaceutical compositions of cyclic nitro compounds and methods of using cyclic nitro compounds and/or pharmaceutical compositions thereof to treat or prevent diseases or disorders characterized by abnormal cell proliferation, such as cancer, inflammation, cardiovascular disease and autoimmune disease.
Abstract:
Methods of forming energetic compositions include forming a premix comprising a nitrate ester, a polymer, and a stabilizer, and combining solids with the premix. Additional stabilizer may be added with the solids and may remain in a crystalline state. Some methods include dissolving a stabilizer in at least one of a plurality of nitrate esters. Energetic compositions include a continuous matrix and a stabilizer. The continuous matrix includes a nitrate ester and surrounds a solid energetic material. Some compositions include a first nitrate ester, a second nitrate ester having a decomposition rate lower than the first nitrate ester, and a stabilizer. An article includes a housing and an energetic composition in the housing.
Abstract:
A composite structure is provided. The structure includes at least one ply of preimpregnated material formed into a curved elongated member of continuous fibers onto a mandrel. The fibers have a select orientation. The curved elongated member has a length and a cross-sectional geometry that varies along the length.
Abstract:
Projectiles containing a fluorophore composition comprising a fluorophore compound and an activator composition comprising an activator compound for marking targets are disclosed. Some embodiments include a nose structure with a cavity radially segmented into a plurality of radially isolated compartments by at least one laterally and radially extending internal wall. Additional embodiments include a fore compartment and an aft compartment sealed by a septum. Yet additional embodiments include at least one pressurized cavity and may further include a plunger positioned and configured to pierce each pressurized cavity. Methods of manufacturing target marking projectiles and methods of marking targets are also disclosed.
Abstract:
A testing apparatus and related methods are disclosed. In one embodiment, the testing apparatus may include a platform, a first plurality of cables, a second plurality of cables and a third plurality of cables, with each of the cables coupled to a respective load cell. The first plurality of cables may suspend the platform and be substantially parallel to each other. The second plurality of cables may be coupled to the platform, may be substantially parallel to each other cable of the second plurality of cables, and substantially perpendicular to each cable of the first plurality of cables. The third plurality of cables may be coupled to the platform, and each cable of the third plurality of cables may be substantially parallel to each other cable of the third plurality of cables, and substantially perpendicular to each cable of the first plurality of cables and the second plurality of cables.
Abstract:
A composite structure is provided. The structure includes at least one ply of preimpregnated material formed into a curved elongated member of continuous fibers onto a mandrel. The fibers have a select orientation. The curved elongated member has a length and a cross-sectional geometry that varies along the length.
Abstract:
An encapsulated propellant charge comprised a sealed combustible container comprised of a consumable material and having a substantially cylindrical shape. The sealed combustible container comprises a top wall, a bottom wall, and a side wall therebetween. The top wall, the bottom wall and the side wall define a chamber; which contains a propellant composition.
Abstract:
Composite material, devices incorporating the composite material and methods of forming the composite material are provided. The composite material includes interstitial material that has at least one of a select relative permittivity property value and a select relative permeability property value. The composite material further includes inclusion material within the interstitial material. The inclusion material has at least one of a select relative permeability property value and a select relative permittivity property value. The select relative permeability and permittivity property values of the interstitial and the inclusion materials are selected so that the effective intrinsic impedance of the interstitial and the inclusion material match the intrinsic impedance of air. Devices made from the composite include metamaterial and/or metamaterial-inspired (e.g. near-field LC-type parasitic) substrates and/or lenses, front-end protection, stealth absorbers, filters and mixers. Beyond the intrinsic, applications include miniature antenna and antenna arrays, directed energy weapons, EMI filters, RF and optical circuit components, among others.