Abstract:
A constant force device has at least a first non-constant axial force driving the first set of arms and a second non-constant axial force driving the second set of arms, where the two sets of arms are offset from one another by 90°. Each of the non-constant axial forces is converted to a radially extending force by the interaction of a force guide and actuator. The force guide is attached to the inner mandrel of the constant force device and is shaped to produce an essentially constant radially extending force through the entire range of motion of the arms. Typically each arm of the pair of arms has a pivoting arm and a telescoping arm where the joint between the pivoting arm and telescoping arm has one or more wheels to reduce friction as the constant force device moves through the tubular. Generally the first pair of arms is opposed to and overlaps by some distance the second pair of arms where the second pair of arms is 90° offset from the first pair of arms. Additional features may include friction reducing members at the joint between the telescoping arm and the pivoting arm, an extension lock, extension limiters, and rotating force guides.
Abstract:
A method for initializing the input of each of m receiver channels of a receiving transducer in a well logging tool comprising the steps of selecting a logging tool having a multi-element receiving transducer wherein each element of the multi-element receiving transducer operates in an anti-resonant mode below its resonant frequency, and executing a routine in an initialization mode wherein a predetermined number of run cycles are operated and receiver input responses are measured and averaged for each of the m channels while transmitter firing signals are disabled.
Abstract:
A longitudinally segmented acoustic transducer for a cement bond logging (CBL) tool having a plurality of adjoining PZT ring-like segments driven synchronously in parallel by one or more pulses and caused to vibrate in an anti-resonant mode, substantially below the resonant frequency of an individual segment when used in a transmitting application. When used in a receiving application, each of the plurality of transducer rings are caused to vibrate by acoustic signals detected by the transducer array, also in an anti-resonant mode. High speed digital signal processing enables on-depth, high quality data for all azimuths at each depth to be obtained, processed, normalized and either sent to the surface in real time for each 20 Hz firing cycle, as the CBL tool is pulled toward the surface, or stored in a memory module in digital form for later retrieval. Built-in calibration factors used for normalizing the output signals to the operating conditions of use may be accessed at any time.
Abstract:
A probe card for testing integrated circuits which maintains rigidity and probe alignment at elevated temperatures. The probe card has a number of probes radially oriented on an insulating plate with a nonuniform radial distribution. The probes extend through an insulating ring. The nonuniform radial distribution of probes has gaps which allows for bolt or attachment to attach a rigid plate to the insulating ring. The insulating plate can be made of printed circuit board material, the insulating ring can be made of epoxy. The rigid plate can be made of stainless steel or any other material that maintains rigidity at elevated temperatures. Preferably, the insulating plate also has a stiffener ring located opposite the insulating ring on the top side. The bolts extend through the stiffener ring. The insulating plate has vias which allow the probes to be electrically connected to test electronics located above a top side of the insulating plate. The rigid plate maintains the rigidity of the apparatus and provides heat shielding for the insulating ring and insulating plate. Alternatively, the rigid plate is located above the insulating plate and bolted to the stiffener ring.
Abstract:
This invention presents a method and a mechanism for contacting a set of vertical probes of a circuit testing mechanism with a set of pads or bumps of a circuit under test. The vertical probes have a circular cross section, a tip portion of length L1 and a beam portion of length L2, such that the beam portion extends at a right angle to the tip portion. The tip portion is guided through a guide hole to the pads of the circuit under test and the beam portion secured by its end. In this geometry the contact force between the probe and the pad is described by the relation: ##EQU1## where D.sub.v is a vertical deflection of the probe, I is an area moment of inertia of the probe about its axis, and E is a Young's modulus of the probe. The tip length L1 and beam length L2 are selected for each of the vertical probes in such a way the contact force F in this relation is kept constant thus ensuring that the contact force F between the vertical probes and pads remains substantially equal.
Abstract:
Provided are a probe that enables control of a bending direction and can be simply manufactured, an inspection jig using the probe, an inspection device, and a method of manufacturing the probe. A probe has a substantially bar-like shape extending linearly and includes: a tip end portion, a body portion continuous with the tip end portion Pa; and a base end portion continuous with the body portion. The body portion includes a first connection region having a thickness in a thickness direction perpendicular to an axial direction of the bar-like shape that gradually decreases away from the tip end portion, and a second connection region having a thickness that gradually decreases away from the base end portion. A dimension of the body portion in a width direction perpendicular to the thickness direction is larger than dimensions of the tip end portion and the base end portion.
Abstract:
Various downhole logging tools and methods of using and making the same are disclosed. In one aspect, a downhole logging tool for inspecting one or more well tubulars includes a housing adapted to be supported in the one or more well tubulars by a support cable. A first transmitter, a second transmitter and a third transmitter are positioned in longitudinally spaced-apart relation in the housing and are operable to generate magnetic fields. Driving circuitry is operatively coupled to the first transmitter, the second transmitter and the third transmitter to selectively fire the first transmitter, the second transmitter and the third transmitter in multiple transmission modes to generate magnetic fields to stimulate pulsed eddy currents in the one or more well tubulars. A first receiver is positioned in the housing to sense decaying magnetic fields created by the pulsed eddy currents. Electronic circuitry is operatively coupled to the first receiver to determine a parameter of interest of the one or more well tubular from the sensed decaying magnetic fields.
Abstract:
This disclosure proposes an assembly structure for building probe cards to test square integrated circuit chips. The test probe card assembly structure has one or more wings located at 90.degree. angles to each other upon which probes are laid in a parallel manner for attachment to a probe card. This allows construction of the probe card so that probes touch contacts directly. The probe tips do not touch the contacts at an angle .theta., called the fan out angle. The probes also do not differ in their inclination angles .beta.. As a result, the force at which the many probe tips touch the contacts is relatively constant throughout. In addition, the probe tips are less likely to scrub past the surface of the contact onto the insulation surface of the chip and in doing so damage it. The test probe card assembly structure also contains an epoxy groove, which controls epoxy flow so that the position of the probes stays aligned in the correct plane. The epoxy groove also prevents variance in beam length.
Abstract:
An assembly for making electrical connections to unpackaged integrated circuits using dual contact probes. The probes are said to be dual contact because they contact both the integrated device under test and the testing circuit. The probes have two tips. One tip is located at the end of each leg of the "U"-shaped probe. In operation, the probes are oriented with the legs of the probes extending horizontally and the tips pointing up and down, contacting the IC under test and the testing circuit. The probes are each made of a single piece of metal, and so provide an electrical connection between the IC and testing circuit. Flexing in the legs provides springiness for assuring good contact. The probes are mounted on a rigid block that is rigidly connected to the testing circuit and IC under test. Alignment plates are used to accurately position the probes. The plates can be horizontal or vertical and they have holes or slots that engage parts of the probes. The holes and slots are placed to provide proper positioning of the probes.
Abstract:
A method and device for accurately mounting a probe in a probe card and for maintaining correct location of the probe tip as the probe is used for electronic testing of an IC pad. A membrane having a slot is attached to a support structure of a probe card. The probe tip is inserted into the slot and the probe is affixed to the membrane at the edges of the slot using silicon rubber. The probe is then mounted in the support structure which has a groove for receiving the probe. A distal end of the probe is bonded to the walls of the groove so that the probe is free to move vertically in the groove, but constrained from moving laterally to prevent side-buckling. The membrane and silicon rubber hold the probe tip in proper location during thermal treating of the probe card assembly. Once mounted in the probe card by this method, the probe and probe tip will maintain proper location as they are used for electronic testing of an IC pad. During testing, the probe tip and attached membrane are deflected from their initial position by force of contact with the IC pad. Upon completion of the test, the contact force is removed from the probe tip. The elasticity of the membrane causes the membrane and the attached probe tip to return to their initial position, ensuring that the probe tip is in the proper location for the next test.