摘要:
Skate boot apparatuses, a skate, and a method are provided. A base including an upper face configured to receive a wearer's foot and a lower face configured to structurally support a skate mechanism is provided. An integral upper support is provided, the integral upper support extending upwardly from the base to a point above an ankle of the wearer, the integral support having a varying rigidity decreasing from a high rigidity near the base to a low rigidity near the point above the ankle of the wearer.
摘要:
Reinforcement element made of a composite material constituted of a layer of inextensible textile material and a layer of polymeric material assembled to the layer of textile material during a molding or vulcanizing step. The textile material is a woven or mesh material, and the textile material is a polyester, polyamide, polypropylene or glass fiber based material. The polymeric material can be a thermosetting material, such as rubber or silicone, or an injected thermoplastic, such as polyurethane, polyvinyl chloride, or polypropylene. Advantageously, the polymeric material is at least partially transparent. The composite material can be incorporated in a boot or a binding using tightening straps. The invention also relates to a method of manufacturing such reinforcement element.
摘要:
Skate boot apparatuses, a skate, and a method are provided. A base including an upper face configured to receive a wearer's foot and a lower face configured to structurally support a skate mechanism is provided. An integral upper support is provided, the integral upper support extending upwardly from the base to a point above an ankle of the wearer, the integral support having a varying rigidity decreasing from a high rigidity near the base to a low rigidity near the point above the ankle of the wearer.
摘要:
A snowboard boot (200) includes an upper boot (204) secured to an outsole (206). The boot upper includes a vamp opening (208) that is closed by a tongue (210) and a selectively securable vamp fastener (216). The tongue (210) carries a pocket (218) on a lower end (212) thereof, and first and second snap fasteners (222) on an upper end (214) thereof. A semi-rigid tongue stiffener (202) can be selectively secured to an anterior side of the tongue (210) utilizing the pocket and snap fasteners to selectively increase the stiffness of the boot and resistance to forward flexure by a predetermined degree.
摘要:
A highback for controlling a gliding board, such as a snowboard, through leg movement of a rider. The highback is comprised of at least two distinct materials with different stiffnesses to achieve desired blend of stiffness and flexibility. The highback may employ a material of greater stiffness in one or more regions to provide high force transmission between the rider and the board. The highback may employ a material of lesser stiffness in one or more regions where flexibility is desired for more gradual power transmission, comfort and/or to facilitate highback adjustability. The arrangement of the different materials provides a lightweight highback with a relatively sleek profile having selected regions of stiffness and/or flexibility.
摘要:
An embodiment of a snowboard boot with removable upper support includes a sole portion that cooperatively with an upwardly extending boot upper provides a volume for receiving a user's foot. The boot upper has a high back portion that includes an interior pocket adapted to receive a generally Y-shaped stiffening insert. The pocket is provided at the back of the upper, by attaching a back panel to the upper, the back panel having a front panel attached to the front side, thereby forming a pocket. Slots are provided at the top corners of the back panel that can slidably engage the upper tabs of the insert, thereby locking the insert in place.
摘要:
A method of manufacturing a multi-layer, composite footwear upper having a three-dimensional geometry includes forming a substantially planar composite sheet from two or more layers, heating the composite sheet, and shaping the composite sheet into the three-dimensional geometry of the footwear upper. The composite sheet can be formed by laminating a first layer of thermoplastic foam to a second layer of thermoplastic urethane (TPU). A third layer of mesh fabric can be interposed between the first and second layers. The composite sheet can be shaped by compression molding in a mold cavity or by lasting to achieve the desired three-dimensional geometry.
摘要:
A boot having a structure for the treatment of the micro-vibrations that can occur between the bottom assembly and the upper of the latter by resonance effect on impact with the ground. A thin elastic membrane with a Shore A hardness of about 20-30 is positioned between the core layer of the bottom assembly and the upper to serve as a dynamic screen with respect to the micro-vibrations. The invention is particularly adapted to the design of sports boot, such as walking shoes and/or running shoes.
摘要:
A method of manufacturing a multi-layer, composite footwear upper having a three-dimensional geometry includes the steps of forming a substantially planar composite sheet from two or more layers, heating the composite sheet, and compression molding the composite sheet into the three-dimensional geometry of the footwear upper. The composite sheet is formed by laminating a first layer of thermoplastic foam to a second layer of thermoplastic urethane (TPU), preferably in the form of a TPU film. A third layer of mesh fabric can be interposed between the first and second layers. The composite sheet is compressed after heating in a mold cavity to achieve the desired three-dimensional geometry. The composite sheet can be compression molded into separate sections which are assembled after molding to form the footwear upper. Alternatively, the composite sheet can be compression molded into a seamless, unitary footwear upper that requires minimal, if any, assembly for completion. The multi-layer composite upper can be applied to a sole to form performance footwear suitable for use in a wide range of conditions.
摘要:
A structural interface for a sports shoe is described. An implementation of the structural interface includes a lateral beam member and a medial beam member connected together by a bridge member. The lateral and medial beam members may each include at least one mounting location for connection means and/or attachment devices. The connection means or attachment devices mate with sports apparatus, for example, snowboard bindings or bike pedals.